Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibf11N Unicode version

Theorem dibf11N 31973
Description: The partial isomorphism A for a lattice  K is a one-to-one function. . Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibcl.h  |-  H  =  ( LHyp `  K
)
dibcl.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibf11N  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )

Proof of Theorem dibf11N
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
2 eqid 2296 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
3 dibcl.h . . . 4  |-  H  =  ( LHyp `  K
)
4 dibcl.i . . . 4  |-  I  =  ( ( DIsoB `  K
) `  W )
51, 2, 3, 4dibfnN 31968 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I  Fn  { x  e.  ( Base `  K
)  |  x ( le `  K ) W } )
6 fnfun 5357 . . . 4  |-  ( I  Fn  { x  e.  ( Base `  K
)  |  x ( le `  K ) W }  ->  Fun  I )
7 funfn 5299 . . . 4  |-  ( Fun  I  <->  I  Fn  dom  I )
86, 7sylib 188 . . 3  |-  ( I  Fn  { x  e.  ( Base `  K
)  |  x ( le `  K ) W }  ->  I  Fn  dom  I )
95, 8syl 15 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I  Fn  dom  I
)
10 eqidd 2297 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ran  I  =  ran  I )
111, 2, 3, 4dibeldmN 31970 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( x  e.  dom  I 
<->  ( x  e.  (
Base `  K )  /\  x ( le `  K ) W ) ) )
121, 2, 3, 4dibeldmN 31970 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( y  e.  dom  I 
<->  ( y  e.  (
Base `  K )  /\  y ( le `  K ) W ) ) )
1311, 12anbi12d 691 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( x  e. 
dom  I  /\  y  e.  dom  I )  <->  ( (
x  e.  ( Base `  K )  /\  x
( le `  K
) W )  /\  ( y  e.  (
Base `  K )  /\  y ( le `  K ) W ) ) ) )
141, 2, 3, 4dib11N 31972 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  /\  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) )  ->  (
( I `  x
)  =  ( I `
 y )  <->  x  =  y ) )
1514biimpd 198 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  /\  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) )  ->  (
( I `  x
)  =  ( I `
 y )  ->  x  =  y )
)
16153expib 1154 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  /\  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) )  ->  (
( I `  x
)  =  ( I `
 y )  ->  x  =  y )
) )
1713, 16sylbid 206 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( x  e. 
dom  I  /\  y  e.  dom  I )  -> 
( ( I `  x )  =  ( I `  y )  ->  x  =  y ) ) )
1817ralrimivv 2647 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  A. x  e.  dom  I A. y  e.  dom  I ( ( I `
 x )  =  ( I `  y
)  ->  x  =  y ) )
19 dff1o6 5807 . 2  |-  ( I : dom  I -1-1-onto-> ran  I  <->  ( I  Fn  dom  I  /\  ran  I  =  ran  I  /\  A. x  e. 
dom  I A. y  e.  dom  I ( ( I `  x )  =  ( I `  y )  ->  x  =  y ) ) )
209, 10, 18, 19syl3anbrc 1136 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   class class class wbr 4039   dom cdm 4705   ran crn 4706   Fun wfun 5265    Fn wfn 5266   -1-1-onto->wf1o 5270   ` cfv 5271   Basecbs 13164   lecple 13231   HLchlt 30162   LHypclh 30795   DIsoBcdib 31950
This theorem is referenced by:  dibintclN  31979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970  df-disoa 31841  df-dib 31951
  Copyright terms: Public domain W3C validator