Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diclspsn Unicode version

Theorem diclspsn 31677
Description: The value of isomorphism C is spanned by vector  F. Part of proof of Lemma N of [Crawley] p. 121 line 29. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
diclspsn.l  |-  .<_  =  ( le `  K )
diclspsn.a  |-  A  =  ( Atoms `  K )
diclspsn.h  |-  H  =  ( LHyp `  K
)
diclspsn.p  |-  P  =  ( ( oc `  K ) `  W
)
diclspsn.t  |-  T  =  ( ( LTrn `  K
) `  W )
diclspsn.i  |-  I  =  ( ( DIsoC `  K
) `  W )
diclspsn.u  |-  U  =  ( ( DVecH `  K
) `  W )
diclspsn.n  |-  N  =  ( LSpan `  U )
diclspsn.f  |-  F  =  ( iota_ f  e.  T
( f `  P
)  =  Q )
Assertion
Ref Expression
diclspsn  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  ( N `
 { <. F , 
(  _I  |`  T )
>. } ) )
Distinct variable groups:    .<_ , f    P, f    A, f    f, H    T, f    f, K    Q, f    f, W
Allowed substitution hints:    U( f)    F( f)    I( f)    N( f)

Proof of Theorem diclspsn
Dummy variables  g 
s  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2675 . . 3  |-  { v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) }  =  { v  |  ( v  e.  ( T  X.  (
( TEndo `  K ) `  W ) )  /\  E. x  e.  ( Base `  (Scalar `  U )
) v  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) }
2 relopab 4960 . . . . 5  |-  Rel  { <. y ,  z >.  |  ( y  =  ( z `  F
)  /\  z  e.  ( ( TEndo `  K
) `  W )
) }
3 diclspsn.l . . . . . . 7  |-  .<_  =  ( le `  K )
4 diclspsn.a . . . . . . 7  |-  A  =  ( Atoms `  K )
5 diclspsn.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
6 diclspsn.p . . . . . . 7  |-  P  =  ( ( oc `  K ) `  W
)
7 diclspsn.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
8 eqid 2404 . . . . . . 7  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
9 diclspsn.i . . . . . . 7  |-  I  =  ( ( DIsoC `  K
) `  W )
10 diclspsn.f . . . . . . 7  |-  F  =  ( iota_ f  e.  T
( f `  P
)  =  Q )
113, 4, 5, 6, 7, 8, 9, 10dicval2 31662 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { <. y ,  z >.  |  ( y  =  ( z `
 F )  /\  z  e.  ( ( TEndo `  K ) `  W ) ) } )
1211releqd 4920 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Rel  ( I `  Q )  <->  Rel  { <. y ,  z >.  |  ( y  =  ( z `
 F )  /\  z  e.  ( ( TEndo `  K ) `  W ) ) } ) )
132, 12mpbiri 225 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  Rel  ( I `  Q
) )
14 ssrab2 3388 . . . . . 6  |-  { v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) }  C_  ( T  X.  ( ( TEndo `  K
) `  W )
)
15 relxp 4942 . . . . . 6  |-  Rel  ( T  X.  ( ( TEndo `  K ) `  W
) )
16 relss 4922 . . . . . 6  |-  ( { v  e.  ( T  X.  ( ( TEndo `  K ) `  W
) )  |  E. x  e.  ( Base `  (Scalar `  U )
) v  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) }  C_  ( T  X.  ( ( TEndo `  K ) `  W
) )  ->  ( Rel  ( T  X.  (
( TEndo `  K ) `  W ) )  ->  Rel  { v  e.  ( T  X.  ( (
TEndo `  K ) `  W ) )  |  E. x  e.  (
Base `  (Scalar `  U
) ) v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. ) } ) )
1714, 15, 16mp2 9 . . . . 5  |-  Rel  {
v  e.  ( T  X.  ( ( TEndo `  K ) `  W
) )  |  E. x  e.  ( Base `  (Scalar `  U )
) v  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) }
1817a1i 11 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  Rel  { v  e.  ( T  X.  ( (
TEndo `  K ) `  W ) )  |  E. x  e.  (
Base `  (Scalar `  U
) ) v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. ) } )
19 id 20 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
20 vex 2919 . . . . . . 7  |-  g  e. 
_V
21 vex 2919 . . . . . . 7  |-  s  e. 
_V
223, 4, 5, 6, 7, 8, 9, 10, 20, 21dicopelval2 31664 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. g ,  s
>.  e.  ( I `  Q )  <->  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) ) )
23 simprl 733 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  g  =  ( s `  F ) )
24 simpll 731 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
25 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  s  e.  ( ( TEndo `  K
) `  W )
)
26 simpl 444 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
273, 4, 5, 6lhpocnel2 30501 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
2827adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
29 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
303, 4, 5, 7, 10ltrniotacl 31061 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
3126, 28, 29, 30syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
3231adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  F  e.  T )
335, 7, 8tendocl 31249 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  F  e.  T )  ->  (
s `  F )  e.  T )
3424, 25, 32, 33syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  (
s `  F )  e.  T )
3523, 34eqeltrd 2478 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  g  e.  T )
3635, 25, 233jca 1134 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  (
g  e.  T  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  g  =  ( s `  F ) ) )
37 simpr3 965 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  g  =  (
s `  F )
) )  ->  g  =  ( s `  F ) )
38 simpr2 964 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  g  =  (
s `  F )
) )  ->  s  e.  ( ( TEndo `  K
) `  W )
)
3937, 38jca 519 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  g  =  (
s `  F )
) )  ->  (
g  =  ( s `
 F )  /\  s  e.  ( ( TEndo `  K ) `  W ) ) )
4036, 39impbida 806 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( g  =  ( s `  F
)  /\  s  e.  ( ( TEndo `  K
) `  W )
)  <->  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  g  =  (
s `  F )
) ) )
41 diclspsn.u . . . . . . . . . . . . . 14  |-  U  =  ( ( DVecH `  K
) `  W )
42 eqid 2404 . . . . . . . . . . . . . 14  |-  (Scalar `  U )  =  (Scalar `  U )
43 eqid 2404 . . . . . . . . . . . . . 14  |-  ( Base `  (Scalar `  U )
)  =  ( Base `  (Scalar `  U )
)
445, 8, 41, 42, 43dvhbase 31566 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  (Scalar `  U ) )  =  ( ( TEndo `  K
) `  W )
)
4544adantr 452 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Base `  (Scalar `  U
) )  =  ( ( TEndo `  K ) `  W ) )
4645rexeqdv 2871 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( E. x  e.  ( Base `  (Scalar `  U ) ) <.
g ,  s >.  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  <->  E. x  e.  ( (
TEndo `  K ) `  W ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) )
47 simpll 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( K  e.  HL  /\  W  e.  H ) )
48 simpr 448 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  x  e.  ( ( TEndo `  K
) `  W )
)
4931adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  F  e.  T )
505, 7, 8tendoidcl 31251 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W
) )
5150ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W ) )
52 eqid 2404 . . . . . . . . . . . . . . . . . 18  |-  ( .s
`  U )  =  ( .s `  U
)
535, 7, 8, 41, 52dvhopvsca 31585 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  F  e.  T  /\  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W
) ) )  -> 
( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. )  =  <. ( x `  F ) ,  ( x  o.  (  _I  |`  T ) ) >.
)
5447, 48, 49, 51, 53syl13anc 1186 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( x
( .s `  U
) <. F ,  (  _I  |`  T ) >. )  =  <. (
x `  F ) ,  ( x  o.  (  _I  |`  T ) ) >. )
5554eqeq2d 2415 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. )  <->  <. g ,  s
>.  =  <. ( x `
 F ) ,  ( x  o.  (  _I  |`  T ) )
>. ) )
5620, 21opth 4395 . . . . . . . . . . . . . . 15  |-  ( <.
g ,  s >.  =  <. ( x `  F ) ,  ( x  o.  (  _I  |`  T ) ) >.  <->  ( g  =  ( x `
 F )  /\  s  =  ( x  o.  (  _I  |`  T ) ) ) )
5755, 56syl6bb 253 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. )  <->  ( g  =  ( x `  F
)  /\  s  =  ( x  o.  (  _I  |`  T ) ) ) ) )
585, 7, 8tendo1mulr 31253 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  x  e.  ( ( TEndo `  K ) `  W ) )  -> 
( x  o.  (  _I  |`  T ) )  =  x )
5958adantlr 696 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( x  o.  (  _I  |`  T ) )  =  x )
6059eqeq2d 2415 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( s  =  ( x  o.  (  _I  |`  T ) )  <->  s  =  x ) )
61 equcom 1688 . . . . . . . . . . . . . . . 16  |-  ( s  =  x  <->  x  =  s )
6260, 61syl6bb 253 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( s  =  ( x  o.  (  _I  |`  T ) )  <->  x  =  s
) )
6362anbi2d 685 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( (
g  =  ( x `
 F )  /\  s  =  ( x  o.  (  _I  |`  T ) ) )  <->  ( g  =  ( x `  F )  /\  x  =  s ) ) )
6457, 63bitrd 245 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. )  <->  ( g  =  ( x `  F
)  /\  x  =  s ) ) )
65 ancom 438 . . . . . . . . . . . . 13  |-  ( ( g  =  ( x `
 F )  /\  x  =  s )  <->  ( x  =  s  /\  g  =  ( x `  F ) ) )
6664, 65syl6bb 253 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. )  <->  ( x  =  s  /\  g  =  ( x `  F
) ) ) )
6766rexbidva 2683 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( E. x  e.  ( ( TEndo `  K
) `  W ) <. g ,  s >.  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  <->  E. x  e.  ( (
TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) ) )
6846, 67bitrd 245 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( E. x  e.  ( Base `  (Scalar `  U ) ) <.
g ,  s >.  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  <->  E. x  e.  ( (
TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) ) )
69683anbi3d 1260 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  (
Base `  (Scalar `  U
) ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) )  <->  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) ) ) )
70 fveq1 5686 . . . . . . . . . . . . . 14  |-  ( x  =  s  ->  (
x `  F )  =  ( s `  F ) )
7170eqeq2d 2415 . . . . . . . . . . . . 13  |-  ( x  =  s  ->  (
g  =  ( x `
 F )  <->  g  =  ( s `  F
) ) )
7271ceqsrexv 3029 . . . . . . . . . . . 12  |-  ( s  e.  ( ( TEndo `  K ) `  W
)  ->  ( E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) )  <->  g  =  ( s `  F
) ) )
7372pm5.32i 619 . . . . . . . . . . 11  |-  ( ( s  e.  ( (
TEndo `  K ) `  W )  /\  E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) )  <-> 
( s  e.  ( ( TEndo `  K ) `  W )  /\  g  =  ( s `  F ) ) )
7473anbi2i 676 . . . . . . . . . 10  |-  ( ( g  e.  T  /\  ( s  e.  ( ( TEndo `  K ) `  W )  /\  E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) ) )  <->  ( g  e.  T  /\  ( s  e.  ( ( TEndo `  K ) `  W
)  /\  g  =  ( s `  F
) ) ) )
75 3anass 940 . . . . . . . . . 10  |-  ( ( g  e.  T  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) )  <-> 
( g  e.  T  /\  ( s  e.  ( ( TEndo `  K ) `  W )  /\  E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) ) ) )
76 3anass 940 . . . . . . . . . 10  |-  ( ( g  e.  T  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  g  =  ( s `  F ) )  <->  ( g  e.  T  /\  (
s  e.  ( (
TEndo `  K ) `  W )  /\  g  =  ( s `  F ) ) ) )
7774, 75, 763bitr4i 269 . . . . . . . . 9  |-  ( ( g  e.  T  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) )  <-> 
( g  e.  T  /\  s  e.  (
( TEndo `  K ) `  W )  /\  g  =  ( s `  F ) ) )
7869, 77syl6rbb 254 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  g  =  (
s `  F )
)  <->  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  (
Base `  (Scalar `  U
) ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) ) )
7940, 78bitrd 245 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( g  =  ( s `  F
)  /\  s  e.  ( ( TEndo `  K
) `  W )
)  <->  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  (
Base `  (Scalar `  U
) ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) ) )
80 eqeq1 2410 . . . . . . . . . . 11  |-  ( v  =  <. g ,  s
>.  ->  ( v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. )  <->  <.
g ,  s >.  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )
) )
8180rexbidv 2687 . . . . . . . . . 10  |-  ( v  =  <. g ,  s
>.  ->  ( E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  <->  E. x  e.  ( Base `  (Scalar `  U )
) <. g ,  s
>.  =  ( x
( .s `  U
) <. F ,  (  _I  |`  T ) >. ) ) )
8281rabxp 4873 . . . . . . . . 9  |-  { v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) }  =  { <. g ,  s >.  |  ( g  e.  T  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  E. x  e.  ( Base `  (Scalar `  U )
) <. g ,  s
>.  =  ( x
( .s `  U
) <. F ,  (  _I  |`  T ) >. ) ) }
8382eleq2i 2468 . . . . . . . 8  |-  ( <.
g ,  s >.  e.  { v  e.  ( T  X.  ( (
TEndo `  K ) `  W ) )  |  E. x  e.  (
Base `  (Scalar `  U
) ) v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. ) } 
<-> 
<. g ,  s >.  e.  { <. g ,  s
>.  |  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  (
Base `  (Scalar `  U
) ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) } )
84 opabid 4421 . . . . . . . 8  |-  ( <.
g ,  s >.  e.  { <. g ,  s
>.  |  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  (
Base `  (Scalar `  U
) ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) }  <->  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  (
Base `  (Scalar `  U
) ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) )
8583, 84bitr2i 242 . . . . . . 7  |-  ( ( g  e.  T  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  E. x  e.  ( Base `  (Scalar `  U )
) <. g ,  s
>.  =  ( x
( .s `  U
) <. F ,  (  _I  |`  T ) >. ) )  <->  <. g ,  s >.  e.  { v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) } )
8679, 85syl6bb 253 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( g  =  ( s `  F
)  /\  s  e.  ( ( TEndo `  K
) `  W )
)  <->  <. g ,  s
>.  e.  { v  e.  ( T  X.  (
( TEndo `  K ) `  W ) )  |  E. x  e.  (
Base `  (Scalar `  U
) ) v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. ) } ) )
8722, 86bitrd 245 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. g ,  s
>.  e.  ( I `  Q )  <->  <. g ,  s >.  e.  { v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) } ) )
8887eqrelrdv2 4934 . . . 4  |-  ( ( ( Rel  ( I `
 Q )  /\  Rel  { v  e.  ( T  X.  ( (
TEndo `  K ) `  W ) )  |  E. x  e.  (
Base `  (Scalar `  U
) ) v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. ) } )  /\  (
( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( I `  Q )  =  {
v  e.  ( T  X.  ( ( TEndo `  K ) `  W
) )  |  E. x  e.  ( Base `  (Scalar `  U )
) v  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) } )
8913, 18, 19, 88syl21anc 1183 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) } )
90 simpll 731 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( Base `  (Scalar `  U ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
9145eleq2d 2471 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( x  e.  (
Base `  (Scalar `  U
) )  <->  x  e.  ( ( TEndo `  K
) `  W )
) )
9291biimpa 471 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( Base `  (Scalar `  U ) ) )  ->  x  e.  ( ( TEndo `  K ) `  W ) )
9350adantr 452 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
(  _I  |`  T )  e.  ( ( TEndo `  K ) `  W
) )
94 opelxpi 4869 . . . . . . . . . 10  |-  ( ( F  e.  T  /\  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W
) )  ->  <. F , 
(  _I  |`  T )
>.  e.  ( T  X.  ( ( TEndo `  K
) `  W )
) )
9531, 93, 94syl2anc 643 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  <. F ,  (  _I  |`  T ) >.  e.  ( T  X.  ( (
TEndo `  K ) `  W ) ) )
9695adantr 452 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( Base `  (Scalar `  U ) ) )  ->  <. F ,  (  _I  |`  T ) >.  e.  ( T  X.  ( ( TEndo `  K
) `  W )
) )
975, 7, 8, 41, 52dvhvscacl 31586 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  <. F ,  (  _I  |`  T ) >.  e.  ( T  X.  ( ( TEndo `  K
) `  W )
) ) )  -> 
( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. )  e.  ( T  X.  (
( TEndo `  K ) `  W ) ) )
9890, 92, 96, 97syl12anc 1182 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( Base `  (Scalar `  U ) ) )  ->  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  e.  ( T  X.  (
( TEndo `  K ) `  W ) ) )
99 eleq1a 2473 . . . . . . 7  |-  ( ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. )  e.  ( T  X.  ( ( TEndo `  K ) `  W
) )  ->  (
v  =  ( x ( .s `  U
) <. F ,  (  _I  |`  T ) >. )  ->  v  e.  ( T  X.  (
( TEndo `  K ) `  W ) ) ) )
10098, 99syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( Base `  (Scalar `  U ) ) )  ->  ( v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. )  ->  v  e.  ( T  X.  ( ( TEndo `  K ) `  W
) ) ) )
101100rexlimdva 2790 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  ->  v  e.  ( T  X.  ( ( TEndo `  K ) `  W
) ) ) )
102101pm4.71rd 617 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  <->  ( v  e.  ( T  X.  ( ( TEndo `  K ) `  W
) )  /\  E. x  e.  ( Base `  (Scalar `  U )
) v  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) ) )
103102abbidv 2518 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  { v  |  E. x  e.  ( Base `  (Scalar `  U )
) v  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) }  =  {
v  |  ( v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  /\  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )
) } )
1041, 89, 1033eqtr4a 2462 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { v  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) } )
1055, 41, 26dvhlmod 31593 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  U  e.  LMod )
106 eqid 2404 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
1075, 7, 8, 41, 106dvhelvbasei 31571 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W ) ) )  ->  <. F ,  (  _I  |`  T ) >.  e.  ( Base `  U
) )
10826, 31, 93, 107syl12anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  <. F ,  (  _I  |`  T ) >.  e.  (
Base `  U )
)
109 diclspsn.n . . . 4  |-  N  =  ( LSpan `  U )
11042, 43, 106, 52, 109lspsn 16033 . . 3  |-  ( ( U  e.  LMod  /\  <. F ,  (  _I  |`  T )
>.  e.  ( Base `  U
) )  ->  ( N `  { <. F , 
(  _I  |`  T )
>. } )  =  {
v  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) } )
111105, 108, 110syl2anc 643 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( N `  { <. F ,  (  _I  |`  T ) >. } )  =  { v  |  E. x  e.  (
Base `  (Scalar `  U
) ) v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. ) } )
112104, 111eqtr4d 2439 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  ( N `
 { <. F , 
(  _I  |`  T )
>. } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   {cab 2390   E.wrex 2667   {crab 2670    C_ wss 3280   {csn 3774   <.cop 3777   class class class wbr 4172   {copab 4225    _I cid 4453    X. cxp 4835    |` cres 4839    o. ccom 4841   Rel wrel 4842   ` cfv 5413  (class class class)co 6040   iota_crio 6501   Basecbs 13424  Scalarcsca 13487   .scvsca 13488   lecple 13491   occoc 13492   LModclmod 15905   LSpanclspn 16002   Atomscatm 29746   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   TEndoctendo 31234   DVecHcdvh 31561   DIsoCcdic 31655
This theorem is referenced by:  cdlemn5pre  31683  dih1dimc  31725
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-undef 6502  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-0g 13682  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-mnd 14645  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-dvr 15743  df-drng 15792  df-lmod 15907  df-lss 15964  df-lsp 16003  df-lvec 16130  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tendo 31237  df-edring 31239  df-dvech 31562  df-dic 31656
  Copyright terms: Public domain W3C validator