MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difdifdir Unicode version

Theorem difdifdir 3707
Description: Distributive law for class difference. Exercise 4.8 of [Stoll] p. 16. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
difdifdir  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  ( B  \  C ) )

Proof of Theorem difdifdir
StepHypRef Expression
1 dif32 3596 . . . . 5  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  B
)
2 invdif 3574 . . . . 5  |-  ( ( A  \  C )  i^i  ( _V  \  B ) )  =  ( ( A  \  C )  \  B
)
31, 2eqtr4i 2458 . . . 4  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  i^i  ( _V  \  B ) )
4 un0 3644 . . . 4  |-  ( ( ( A  \  C
)  i^i  ( _V  \  B ) )  u.  (/) )  =  (
( A  \  C
)  i^i  ( _V  \  B ) )
53, 4eqtr4i 2458 . . 3  |-  ( ( A  \  B ) 
\  C )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (/) )
6 indi 3579 . . . 4  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (
( A  \  C
)  i^i  C )
)
7 disjdif 3692 . . . . . 6  |-  ( C  i^i  ( A  \  C ) )  =  (/)
8 incom 3525 . . . . . 6  |-  ( C  i^i  ( A  \  C ) )  =  ( ( A  \  C )  i^i  C
)
97, 8eqtr3i 2457 . . . . 5  |-  (/)  =  ( ( A  \  C
)  i^i  C )
109uneq2i 3490 . . . 4  |-  ( ( ( A  \  C
)  i^i  ( _V  \  B ) )  u.  (/) )  =  (
( ( A  \  C )  i^i  ( _V  \  B ) )  u.  ( ( A 
\  C )  i^i 
C ) )
116, 10eqtr4i 2458 . . 3  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (/) )
125, 11eqtr4i 2458 . 2  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  i^i  (
( _V  \  B
)  u.  C ) )
13 ddif 3471 . . . . 5  |-  ( _V 
\  ( _V  \  C ) )  =  C
1413uneq2i 3490 . . . 4  |-  ( ( _V  \  B )  u.  ( _V  \ 
( _V  \  C
) ) )  =  ( ( _V  \  B )  u.  C
)
15 indm 3592 . . . . 5  |-  ( _V 
\  ( B  i^i  ( _V  \  C ) ) )  =  ( ( _V  \  B
)  u.  ( _V 
\  ( _V  \  C ) ) )
16 invdif 3574 . . . . . 6  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
1716difeq2i 3454 . . . . 5  |-  ( _V 
\  ( B  i^i  ( _V  \  C ) ) )  =  ( _V  \  ( B 
\  C ) )
1815, 17eqtr3i 2457 . . . 4  |-  ( ( _V  \  B )  u.  ( _V  \ 
( _V  \  C
) ) )  =  ( _V  \  ( B  \  C ) )
1914, 18eqtr3i 2457 . . 3  |-  ( ( _V  \  B )  u.  C )  =  ( _V  \  ( B  \  C ) )
2019ineq2i 3531 . 2  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( A  \  C )  i^i  ( _V  \  ( B  \  C ) ) )
21 invdif 3574 . 2  |-  ( ( A  \  C )  i^i  ( _V  \ 
( B  \  C
) ) )  =  ( ( A  \  C )  \  ( B  \  C ) )
2212, 20, 213eqtri 2459 1  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1652   _Vcvv 2948    \ cdif 3309    u. cun 3310    i^i cin 3311   (/)c0 3620
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621
  Copyright terms: Public domain W3C validator