MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin Unicode version

Theorem difin 3367
Description: Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )

Proof of Theorem difin
StepHypRef Expression
1 pm4.61 417 . . 3  |-  ( -.  ( x  e.  A  ->  x  e.  B )  <-> 
( x  e.  A  /\  -.  x  e.  B
) )
2 anclb 532 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  B )  <->  ( x  e.  A  -> 
( x  e.  A  /\  x  e.  B
) ) )
3 elin 3319 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
43imbi2i 305 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  ( A  i^i  B ) )  <->  ( x  e.  A  ->  ( x  e.  A  /\  x  e.  B ) ) )
5 iman 415 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  ( A  i^i  B ) )  <->  -.  (
x  e.  A  /\  -.  x  e.  ( A  i^i  B ) ) )
62, 4, 53bitr2i 266 . . . 4  |-  ( ( x  e.  A  ->  x  e.  B )  <->  -.  ( x  e.  A  /\  -.  x  e.  ( A  i^i  B ) ) )
76con2bii 324 . . 3  |-  ( ( x  e.  A  /\  -.  x  e.  ( A  i^i  B ) )  <->  -.  ( x  e.  A  ->  x  e.  B ) )
8 eldif 3123 . . 3  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
91, 7, 83bitr4i 270 . 2  |-  ( ( x  e.  A  /\  -.  x  e.  ( A  i^i  B ) )  <-> 
x  e.  ( A 
\  B ) )
109difeqri 3257 1  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    \ cdif 3110    i^i cin 3112
This theorem is referenced by:  dfin4  3370  indif  3372  symdif1  3394  notrab  3406  dfsdom2  6938  hashdif  11326  isercolllem3  12091  iuncld  16730  llycmpkgen2  17193  1stckgen  17197  ptbasfi  17224  txkgen  17294  cmmbl  18840  onint1  24249
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-v 2759  df-dif 3116  df-in 3120
  Copyright terms: Public domain W3C validator