MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin Unicode version

Theorem difin 3419
Description: Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )

Proof of Theorem difin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pm4.61 415 . . 3  |-  ( -.  ( x  e.  A  ->  x  e.  B )  <-> 
( x  e.  A  /\  -.  x  e.  B
) )
2 anclb 530 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  B )  <->  ( x  e.  A  -> 
( x  e.  A  /\  x  e.  B
) ) )
3 elin 3371 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
43imbi2i 303 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  ( A  i^i  B ) )  <->  ( x  e.  A  ->  ( x  e.  A  /\  x  e.  B ) ) )
5 iman 413 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  ( A  i^i  B ) )  <->  -.  (
x  e.  A  /\  -.  x  e.  ( A  i^i  B ) ) )
62, 4, 53bitr2i 264 . . . 4  |-  ( ( x  e.  A  ->  x  e.  B )  <->  -.  ( x  e.  A  /\  -.  x  e.  ( A  i^i  B ) ) )
76con2bii 322 . . 3  |-  ( ( x  e.  A  /\  -.  x  e.  ( A  i^i  B ) )  <->  -.  ( x  e.  A  ->  x  e.  B ) )
8 eldif 3175 . . 3  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
91, 7, 83bitr4i 268 . 2  |-  ( ( x  e.  A  /\  -.  x  e.  ( A  i^i  B ) )  <-> 
x  e.  ( A 
\  B ) )
109difeqri 3309 1  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    \ cdif 3162    i^i cin 3164
This theorem is referenced by:  dfin4  3422  indif  3424  symdif1  3446  notrab  3458  dfsdom2  7000  hashdif  11391  isercolllem3  12156  iuncld  16798  llycmpkgen2  17261  1stckgen  17265  ptbasfi  17292  txkgen  17362  cmmbl  18908  disjdifprg2  23368  onint1  24960
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-dif 3168  df-in 3172
  Copyright terms: Public domain W3C validator