MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difindi Unicode version

Theorem difindi 3424
Description: Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difindi  |-  ( A 
\  ( B  i^i  C ) )  =  ( ( A  \  B
)  u.  ( A 
\  C ) )

Proof of Theorem difindi
StepHypRef Expression
1 dfin3 3409 . . 3  |-  ( B  i^i  C )  =  ( _V  \  (
( _V  \  B
)  u.  ( _V 
\  C ) ) )
21difeq2i 3292 . 2  |-  ( A 
\  ( B  i^i  C ) )  =  ( A  \  ( _V 
\  ( ( _V 
\  B )  u.  ( _V  \  C
) ) ) )
3 indi 3416 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  u.  ( _V  \  C
) ) )  =  ( ( A  i^i  ( _V  \  B ) )  u.  ( A  i^i  ( _V  \  C ) ) )
4 dfin2 3406 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  u.  ( _V  \  C
) ) )  =  ( A  \  ( _V  \  ( ( _V 
\  B )  u.  ( _V  \  C
) ) ) )
5 invdif 3411 . . . 4  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B
)
6 invdif 3411 . . . 4  |-  ( A  i^i  ( _V  \  C ) )  =  ( A  \  C
)
75, 6uneq12i 3328 . . 3  |-  ( ( A  i^i  ( _V 
\  B ) )  u.  ( A  i^i  ( _V  \  C ) ) )  =  ( ( A  \  B
)  u.  ( A 
\  C ) )
83, 4, 73eqtr3i 2312 . 2  |-  ( A 
\  ( _V  \ 
( ( _V  \  B )  u.  ( _V  \  C ) ) ) )  =  ( ( A  \  B
)  u.  ( A 
\  C ) )
92, 8eqtri 2304 1  |-  ( A 
\  ( B  i^i  C ) )  =  ( ( A  \  B
)  u.  ( A 
\  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1624   _Vcvv 2789    \ cdif 3150    u. cun 3151    i^i cin 3152
This theorem is referenced by:  indm  3428  dprddisj2  15268  fctop  16735  cctop  16737  mretopd  16823  restcld  16897  cfinfil  17582  csdfil  17583  fndifnfp  26155
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ral 2549  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160
  Copyright terms: Public domain W3C validator