Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difindir Structured version   Unicode version

Theorem difindir 3598
 Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difindir

Proof of Theorem difindir
StepHypRef Expression
1 inindir 3561 . 2
2 invdif 3584 . 2
3 invdif 3584 . . 3
4 invdif 3584 . . 3
53, 4ineq12i 3542 . 2
61, 2, 53eqtr3i 2466 1
 Colors of variables: wff set class Syntax hints:   wceq 1653  cvv 2958   cdif 3319   cin 3321 This theorem is referenced by:  ablfac1eulem  15635  bwth  17478  ballotlemgun  24787 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rab 2716  df-v 2960  df-dif 3325  df-in 3329
 Copyright terms: Public domain W3C validator