Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih11 Unicode version

Theorem dih11 30359
Description: The isomorphism H is one-to-one. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.)
Hypotheses
Ref Expression
dih11.b  |-  B  =  ( Base `  K
)
dih11.h  |-  H  =  ( LHyp `  K
)
dih11.i  |-  I  =  ( ( DIsoH `  K
) `  W )
Assertion
Ref Expression
dih11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( (
I `  X )  =  ( I `  Y )  <->  X  =  Y ) )

Proof of Theorem dih11
StepHypRef Expression
1 eqss 3115 . 2  |-  ( ( I `  X )  =  ( I `  Y )  <->  ( (
I `  X )  C_  ( I `  Y
)  /\  ( I `  Y )  C_  (
I `  X )
) )
2 dih11.b . . . . 5  |-  B  =  ( Base `  K
)
3 eqid 2253 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
4 dih11.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 dih11.i . . . . 5  |-  I  =  ( ( DIsoH `  K
) `  W )
62, 3, 4, 5dihord 30358 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( (
I `  X )  C_  ( I `  Y
)  <->  X ( le `  K ) Y ) )
72, 3, 4, 5dihord 30358 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  B  /\  X  e.  B
)  ->  ( (
I `  Y )  C_  ( I `  X
)  <->  Y ( le `  K ) X ) )
873com23 1162 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( (
I `  Y )  C_  ( I `  X
)  <->  Y ( le `  K ) X ) )
96, 8anbi12d 694 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( (
( I `  X
)  C_  ( I `  Y )  /\  (
I `  Y )  C_  ( I `  X
) )  <->  ( X
( le `  K
) Y  /\  Y
( le `  K
) X ) ) )
10 simp1l 984 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B
)  ->  K  e.  HL )
11 hllat 28457 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
1210, 11syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B
)  ->  K  e.  Lat )
132, 3latasymb 14004 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X ( le `  K ) Y  /\  Y ( le `  K ) X )  <->  X  =  Y ) )
1412, 13syld3an1 1233 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( ( X ( le `  K ) Y  /\  Y ( le `  K ) X )  <-> 
X  =  Y ) )
159, 14bitrd 246 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( (
( I `  X
)  C_  ( I `  Y )  /\  (
I `  Y )  C_  ( I `  X
) )  <->  X  =  Y ) )
161, 15syl5bb 250 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( (
I `  X )  =  ( I `  Y )  <->  X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    C_ wss 3078   class class class wbr 3920   ` cfv 4592   Basecbs 13022   lecple 13089   Latclat 13995   HLchlt 28444   LHypclh 29077   DIsoHcdih 30322
This theorem is referenced by:  dihf11  30361  dihcnv11  30369  dih0bN  30375  dihlspsnat  30427  dihatexv  30432  dihatexv2  30433  dihmeet2  30440  dochvalr3  30457  djhljjN  30496  dihjat5N  30531
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-tpos 6086  df-iota 6143  df-undef 6182  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-n0 9845  df-z 9904  df-uz 10110  df-fz 10661  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-sca 13098  df-vsca 13099  df-0g 13278  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-mnd 14202  df-submnd 14251  df-grp 14324  df-minusg 14325  df-sbg 14326  df-subg 14453  df-cntz 14628  df-lsm 14782  df-cmn 14926  df-abl 14927  df-mgp 15161  df-ring 15175  df-ur 15177  df-oppr 15240  df-dvdsr 15258  df-unit 15259  df-invr 15289  df-dvr 15300  df-drng 15349  df-lmod 15464  df-lss 15525  df-lsp 15564  df-lvec 15691  df-oposet 28270  df-ol 28272  df-oml 28273  df-covers 28360  df-ats 28361  df-atl 28392  df-cvlat 28416  df-hlat 28445  df-llines 28591  df-lplanes 28592  df-lvols 28593  df-lines 28594  df-psubsp 28596  df-pmap 28597  df-padd 28889  df-lhyp 29081  df-laut 29082  df-ldil 29197  df-ltrn 29198  df-trl 29252  df-tendo 29848  df-edring 29850  df-disoa 30123  df-dvech 30173  df-dib 30233  df-dic 30267  df-dih 30323
  Copyright terms: Public domain W3C validator