Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihffval Unicode version

Theorem dihffval 31493
Description: The isomorphism H for a lattice  K. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
Hypotheses
Ref Expression
dihval.b  |-  B  =  ( Base `  K
)
dihval.l  |-  .<_  =  ( le `  K )
dihval.j  |-  .\/  =  ( join `  K )
dihval.m  |-  ./\  =  ( meet `  K )
dihval.a  |-  A  =  ( Atoms `  K )
dihval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
dihffval  |-  ( K  e.  V  ->  ( DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
Distinct variable groups:    A, q    w, H    u, q, w, x, K
Allowed substitution hints:    A( x, w, u)    B( x, w, u, q)    H( x, u, q)    .\/ ( x, w, u, q)    .<_ ( x, w, u, q)    ./\ (
x, w, u, q)    V( x, w, u, q)

Proof of Theorem dihffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2798 . 2  |-  ( K  e.  V  ->  K  e.  _V )
2 fveq2 5527 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 dihval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2335 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5527 . . . . . 6  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
6 dihval.b . . . . . 6  |-  B  =  ( Base `  K
)
75, 6syl6eqr 2335 . . . . 5  |-  ( k  =  K  ->  ( Base `  k )  =  B )
8 fveq2 5527 . . . . . . . 8  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
9 dihval.l . . . . . . . 8  |-  .<_  =  ( le `  K )
108, 9syl6eqr 2335 . . . . . . 7  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
1110breqd 4036 . . . . . 6  |-  ( k  =  K  ->  (
x ( le `  k ) w  <->  x  .<_  w ) )
12 fveq2 5527 . . . . . . . 8  |-  ( k  =  K  ->  ( DIsoB `  k )  =  ( DIsoB `  K )
)
1312fveq1d 5529 . . . . . . 7  |-  ( k  =  K  ->  (
( DIsoB `  k ) `  w )  =  ( ( DIsoB `  K ) `  w ) )
1413fveq1d 5529 . . . . . 6  |-  ( k  =  K  ->  (
( ( DIsoB `  k
) `  w ) `  x )  =  ( ( ( DIsoB `  K
) `  w ) `  x ) )
15 fveq2 5527 . . . . . . . . 9  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
1615fveq1d 5529 . . . . . . . 8  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
1716fveq2d 5531 . . . . . . 7  |-  ( k  =  K  ->  ( LSubSp `
 ( ( DVecH `  k ) `  w
) )  =  (
LSubSp `  ( ( DVecH `  K ) `  w
) ) )
18 fveq2 5527 . . . . . . . . 9  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
19 dihval.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
2018, 19syl6eqr 2335 . . . . . . . 8  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
2110breqd 4036 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
q ( le `  k ) w  <->  q  .<_  w ) )
2221notbid 285 . . . . . . . . . 10  |-  ( k  =  K  ->  ( -.  q ( le `  k ) w  <->  -.  q  .<_  w ) )
23 fveq2 5527 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( join `  k )  =  ( join `  K
) )
24 dihval.j . . . . . . . . . . . . 13  |-  .\/  =  ( join `  K )
2523, 24syl6eqr 2335 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( join `  k )  = 
.\/  )
26 eqidd 2286 . . . . . . . . . . . 12  |-  ( k  =  K  ->  q  =  q )
27 fveq2 5527 . . . . . . . . . . . . . 14  |-  ( k  =  K  ->  ( meet `  k )  =  ( meet `  K
) )
28 dihval.m . . . . . . . . . . . . . 14  |-  ./\  =  ( meet `  K )
2927, 28syl6eqr 2335 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( meet `  k )  = 
./\  )
3029oveqd 5877 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
x ( meet `  k
) w )  =  ( x  ./\  w
) )
3125, 26, 30oveq123d 5881 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  ( q  .\/  (
x  ./\  w )
) )
3231eqeq1d 2293 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( q ( join `  k ) ( x ( meet `  k
) w ) )  =  x  <->  ( q  .\/  ( x  ./\  w
) )  =  x ) )
3322, 32anbi12d 691 . . . . . . . . 9  |-  ( k  =  K  ->  (
( -.  q ( le `  k ) w  /\  ( q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  <->  ( -.  q  .<_  w  /\  (
q  .\/  ( x  ./\  w ) )  =  x ) ) )
3416fveq2d 5531 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( LSSum `  ( ( DVecH `  k ) `  w
) )  =  (
LSSum `  ( ( DVecH `  K ) `  w
) ) )
35 fveq2 5527 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( DIsoC `  k )  =  ( DIsoC `  K )
)
3635fveq1d 5529 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
( DIsoC `  k ) `  w )  =  ( ( DIsoC `  K ) `  w ) )
3736fveq1d 5529 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
( ( DIsoC `  k
) `  w ) `  q )  =  ( ( ( DIsoC `  K
) `  w ) `  q ) )
3813, 30fveq12d 5533 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) )  =  ( ( ( DIsoB `  K ) `  w ) `  (
x  ./\  w )
) )
3934, 37, 38oveq123d 5881 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( ( ( DIsoC `  k ) `  w
) `  q )
( LSSum `  ( ( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) )  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) )
4039eqeq2d 2296 . . . . . . . . 9  |-  ( k  =  K  ->  (
u  =  ( ( ( ( DIsoC `  k
) `  w ) `  q ) ( LSSum `  ( ( DVecH `  k
) `  w )
) ( ( (
DIsoB `  k ) `  w ) `  (
x ( meet `  k
) w ) ) )  <->  u  =  (
( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) )
4133, 40imbi12d 311 . . . . . . . 8  |-  ( k  =  K  ->  (
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) )  <->  ( ( -.  q  .<_  w  /\  ( q  .\/  (
x  ./\  w )
)  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) )
4220, 41raleqbidv 2750 . . . . . . 7  |-  ( k  =  K  ->  ( A. q  e.  ( Atoms `  k ) ( ( -.  q ( le `  k ) w  /\  ( q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) )  <->  A. q  e.  A  ( ( -.  q  .<_  w  /\  ( q  .\/  (
x  ./\  w )
)  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) )
4317, 42riotaeqbidv 6309 . . . . . 6  |-  ( k  =  K  ->  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  k
) `  w )
) A. q  e.  ( Atoms `  k )
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) )  =  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) )
4411, 14, 43ifbieq12d 3589 . . . . 5  |-  ( k  =  K  ->  if ( x ( le
`  k ) w ,  ( ( (
DIsoB `  k ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  k ) `  w ) ) A. q  e.  ( Atoms `  k ) ( ( -.  q ( le
`  k ) w  /\  ( q (
join `  k )
( x ( meet `  k ) w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w
) `  q )
( LSSum `  ( ( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) )  =  if ( x  .<_  w , 
( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) )
457, 44mpteq12dv 4100 . . . 4  |-  ( k  =  K  ->  (
x  e.  ( Base `  k )  |->  if ( x ( le `  k ) w ,  ( ( ( DIsoB `  k ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  k ) `  w ) ) A. q  e.  ( Atoms `  k ) ( ( -.  q ( le
`  k ) w  /\  ( q (
join `  k )
( x ( meet `  k ) w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w
) `  q )
( LSSum `  ( ( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) )  =  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) )
464, 45mpteq12dv 4100 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( x  e.  ( Base `  k
)  |->  if ( x ( le `  k
) w ,  ( ( ( DIsoB `  k
) `  w ) `  x ) ,  (
iota_ u  e.  ( LSubSp `
 ( ( DVecH `  k ) `  w
) ) A. q  e.  ( Atoms `  k )
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) ) )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
47 df-dih 31492 . . 3  |-  DIsoH  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( x  e.  ( Base `  k
)  |->  if ( x ( le `  k
) w ,  ( ( ( DIsoB `  k
) `  w ) `  x ) ,  (
iota_ u  e.  ( LSubSp `
 ( ( DVecH `  k ) `  w
) ) A. q  e.  ( Atoms `  k )
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) ) ) )
48 fvex 5541 . . . . 5  |-  ( LHyp `  K )  e.  _V
493, 48eqeltri 2355 . . . 4  |-  H  e. 
_V
5049mptex 5748 . . 3  |-  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w , 
( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) )  e.  _V
5146, 47, 50fvmpt 5604 . 2  |-  ( K  e.  _V  ->  ( DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
521, 51syl 15 1  |-  ( K  e.  V  ->  ( DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   A.wral 2545   _Vcvv 2790   ifcif 3567   class class class wbr 4025    e. cmpt 4079   ` cfv 5257  (class class class)co 5860   iota_crio 6299   Basecbs 13150   lecple 13217   joincjn 14080   meetcmee 14081   LSSumclsm 14947   LSubSpclss 15691   Atomscatm 29526   LHypclh 30246   DVecHcdvh 31341   DIsoBcdib 31401   DIsoCcdic 31435   DIsoHcdih 31491
This theorem is referenced by:  dihfval  31494
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-riota 6306  df-dih 31492
  Copyright terms: Public domain W3C validator