Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihjatcclem4 Structured version   Unicode version

Theorem dihjatcclem4 32219
Description: Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.)
Hypotheses
Ref Expression
dihjatcclem.b  |-  B  =  ( Base `  K
)
dihjatcclem.l  |-  .<_  =  ( le `  K )
dihjatcclem.h  |-  H  =  ( LHyp `  K
)
dihjatcclem.j  |-  .\/  =  ( join `  K )
dihjatcclem.m  |-  ./\  =  ( meet `  K )
dihjatcclem.a  |-  A  =  ( Atoms `  K )
dihjatcclem.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihjatcclem.s  |-  .(+)  =  (
LSSum `  U )
dihjatcclem.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihjatcclem.v  |-  V  =  ( ( P  .\/  Q )  ./\  W )
dihjatcclem.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dihjatcclem.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dihjatcclem.q  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
dihjatcc.w  |-  C  =  ( ( oc `  K ) `  W
)
dihjatcc.t  |-  T  =  ( ( LTrn `  K
) `  W )
dihjatcc.r  |-  R  =  ( ( trL `  K
) `  W )
dihjatcc.e  |-  E  =  ( ( TEndo `  K
) `  W )
dihjatcc.g  |-  G  =  ( iota_ d  e.  T
( d `  C
)  =  P )
dihjatcc.dd  |-  D  =  ( iota_ d  e.  T
( d `  C
)  =  Q )
dihjatcc.n  |-  N  =  ( a  e.  E  |->  ( d  e.  T  |->  `' ( a `  d ) ) )
dihjatcc.o  |-  .0.  =  ( d  e.  T  |->  (  _I  |`  B ) )
dihjatcc.d  |-  J  =  ( a  e.  E ,  b  e.  E  |->  ( d  e.  T  |->  ( ( a `  d )  o.  (
b `  d )
) ) )
Assertion
Ref Expression
dihjatcclem4  |-  ( ph  ->  ( I `  V
)  C_  ( (
I `  P )  .(+)  ( I `  Q
) ) )
Distinct variable groups:    .<_ , d    A, d    B, d    C, d   
a, b, E    H, d    P, d    a, d, K, b    Q, d    T, a, b, d    W, a, b, d
Allowed substitution hints:    ph( a, b, d)    A( a, b)    B( a, b)    C( a, b)    D( a, b, d)    P( a, b)    .(+) ( a, b,
d)    Q( a, b)    R( a, b, d)    U( a, b, d)    E( d)    G( a, b, d)    H( a, b)    I( a, b, d)    J( a, b, d)    .\/ ( a, b, d)    .<_ ( a, b)    ./\ ( a, b, d)    N( a, b, d)    V( a, b, d)    .0. ( a,
b, d)

Proof of Theorem dihjatcclem4
Dummy variables  t 
f  s  g  h  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihjatcclem.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
2 dihjatcclem.h . . . 4  |-  H  =  ( LHyp `  K
)
3 dihjatcclem.i . . . 4  |-  I  =  ( ( DIsoH `  K
) `  W )
42, 3dihvalrel 32077 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Rel  ( I `  V ) )
51, 4syl 16 . 2  |-  ( ph  ->  Rel  ( I `  V ) )
61adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( (
f  e.  T  /\  ( R `  f ) 
.<_  V )  /\  s  =  .0.  ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
7 dihjatcclem.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
8 dihjatcclem.a . . . . . . . . . . . 12  |-  A  =  ( Atoms `  K )
9 dihjatcc.w . . . . . . . . . . . 12  |-  C  =  ( ( oc `  K ) `  W
)
107, 8, 2, 9lhpocnel2 30816 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( C  e.  A  /\  -.  C  .<_  W ) )
111, 10syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( C  e.  A  /\  -.  C  .<_  W ) )
12 dihjatcclem.p . . . . . . . . . 10  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
13 dihjatcc.t . . . . . . . . . . 11  |-  T  =  ( ( LTrn `  K
) `  W )
14 dihjatcc.g . . . . . . . . . . 11  |-  G  =  ( iota_ d  e.  T
( d `  C
)  =  P )
157, 8, 2, 13, 14ltrniotacl 31376 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( C  e.  A  /\  -.  C  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G  e.  T )
161, 11, 12, 15syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  G  e.  T )
17 dihjatcclem.q . . . . . . . . . . 11  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
18 dihjatcc.dd . . . . . . . . . . . 12  |-  D  =  ( iota_ d  e.  T
( d `  C
)  =  Q )
197, 8, 2, 13, 18ltrniotacl 31376 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( C  e.  A  /\  -.  C  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  D  e.  T )
201, 11, 17, 19syl3anc 1184 . . . . . . . . . 10  |-  ( ph  ->  D  e.  T )
212, 13ltrncnv 30943 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  D  e.  T
)  ->  `' D  e.  T )
221, 20, 21syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  `' D  e.  T
)
232, 13ltrnco 31516 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' D  e.  T
)  ->  ( G  o.  `' D )  e.  T
)
241, 16, 22, 23syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( G  o.  `' D )  e.  T
)
2524adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( (
f  e.  T  /\  ( R `  f ) 
.<_  V )  /\  s  =  .0.  ) )  -> 
( G  o.  `' D )  e.  T
)
26 simprll 739 . . . . . . 7  |-  ( (
ph  /\  ( (
f  e.  T  /\  ( R `  f ) 
.<_  V )  /\  s  =  .0.  ) )  -> 
f  e.  T )
27 simprlr 740 . . . . . . . 8  |-  ( (
ph  /\  ( (
f  e.  T  /\  ( R `  f ) 
.<_  V )  /\  s  =  .0.  ) )  -> 
( R `  f
)  .<_  V )
28 dihjatcclem.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
29 dihjatcclem.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
30 dihjatcclem.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
31 dihjatcclem.u . . . . . . . . . 10  |-  U  =  ( ( DVecH `  K
) `  W )
32 dihjatcclem.s . . . . . . . . . 10  |-  .(+)  =  (
LSSum `  U )
33 dihjatcclem.v . . . . . . . . . 10  |-  V  =  ( ( P  .\/  Q )  ./\  W )
34 dihjatcc.r . . . . . . . . . 10  |-  R  =  ( ( trL `  K
) `  W )
35 dihjatcc.e . . . . . . . . . 10  |-  E  =  ( ( TEndo `  K
) `  W )
3628, 7, 2, 29, 30, 8, 31, 32, 3, 33, 1, 12, 17, 9, 13, 34, 35, 14, 18dihjatcclem3 32218 . . . . . . . . 9  |-  ( ph  ->  ( R `  ( G  o.  `' D
) )  =  V )
3736adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( (
f  e.  T  /\  ( R `  f ) 
.<_  V )  /\  s  =  .0.  ) )  -> 
( R `  ( G  o.  `' D
) )  =  V )
3827, 37breqtrrd 4238 . . . . . . 7  |-  ( (
ph  /\  ( (
f  e.  T  /\  ( R `  f ) 
.<_  V )  /\  s  =  .0.  ) )  -> 
( R `  f
)  .<_  ( R `  ( G  o.  `' D ) ) )
397, 2, 13, 34, 35tendoex 31772 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( G  o.  `' D )  e.  T  /\  f  e.  T )  /\  ( R `  f )  .<_  ( R `  ( G  o.  `' D
) ) )  ->  E. t  e.  E  ( t `  ( G  o.  `' D
) )  =  f )
406, 25, 26, 38, 39syl121anc 1189 . . . . . 6  |-  ( (
ph  /\  ( (
f  e.  T  /\  ( R `  f ) 
.<_  V )  /\  s  =  .0.  ) )  ->  E. t  e.  E  ( t `  ( G  o.  `' D
) )  =  f )
41 df-rex 2711 . . . . . 6  |-  ( E. t  e.  E  ( t `  ( G  o.  `' D ) )  =  f  <->  E. t
( t  e.  E  /\  ( t `  ( G  o.  `' D
) )  =  f ) )
4240, 41sylib 189 . . . . 5  |-  ( (
ph  /\  ( (
f  e.  T  /\  ( R `  f ) 
.<_  V )  /\  s  =  .0.  ) )  ->  E. t ( t  e.  E  /\  ( t `
 ( G  o.  `' D ) )  =  f ) )
43 eqidd 2437 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( t `  G
)  =  ( t `
 G ) )
44 simprl 733 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
t  e.  E )
451ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
4612ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
47 fvex 5742 . . . . . . . . . . . 12  |-  ( t `
 G )  e. 
_V
48 vex 2959 . . . . . . . . . . . 12  |-  t  e. 
_V
497, 8, 2, 9, 13, 35, 3, 14, 47, 48dihopelvalcqat 32044 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( <. ( t `  G ) ,  t
>.  e.  ( I `  P )  <->  ( (
t `  G )  =  ( t `  G )  /\  t  e.  E ) ) )
5045, 46, 49syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( <. ( t `  G ) ,  t
>.  e.  ( I `  P )  <->  ( (
t `  G )  =  ( t `  G )  /\  t  e.  E ) ) )
5143, 44, 50mpbir2and 889 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  ->  <. ( t `  G
) ,  t >.  e.  ( I `  P
) )
52 eqidd 2437 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( ( N `  t ) `  D
)  =  ( ( N `  t ) `
 D ) )
53 dihjatcc.n . . . . . . . . . . . 12  |-  N  =  ( a  e.  E  |->  ( d  e.  T  |->  `' ( a `  d ) ) )
542, 13, 35, 53tendoicl 31593 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E
)  ->  ( N `  t )  e.  E
)
5545, 44, 54syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( N `  t
)  e.  E )
5617ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
57 fvex 5742 . . . . . . . . . . . 12  |-  ( ( N `  t ) `
 D )  e. 
_V
58 fvex 5742 . . . . . . . . . . . 12  |-  ( N `
 t )  e. 
_V
597, 8, 2, 9, 13, 35, 3, 18, 57, 58dihopelvalcqat 32044 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. ( ( N `
 t ) `  D ) ,  ( N `  t )
>.  e.  ( I `  Q )  <->  ( (
( N `  t
) `  D )  =  ( ( N `
 t ) `  D )  /\  ( N `  t )  e.  E ) ) )
6045, 56, 59syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( <. ( ( N `
 t ) `  D ) ,  ( N `  t )
>.  e.  ( I `  Q )  <->  ( (
( N `  t
) `  D )  =  ( ( N `
 t ) `  D )  /\  ( N `  t )  e.  E ) ) )
6152, 55, 60mpbir2and 889 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  ->  <. ( ( N `  t ) `  D
) ,  ( N `
 t ) >.  e.  ( I `  Q
) )
6216ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  ->  G  e.  T )
6322ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  ->  `' D  e.  T
)
642, 13, 35tendospdi1 31818 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  G  e.  T  /\  `' D  e.  T ) )  -> 
( t `  ( G  o.  `' D
) )  =  ( ( t `  G
)  o.  ( t `
 `' D ) ) )
6545, 44, 62, 63, 64syl13anc 1186 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( t `  ( G  o.  `' D
) )  =  ( ( t `  G
)  o.  ( t `
 `' D ) ) )
66 simprr 734 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( t `  ( G  o.  `' D
) )  =  f )
6720ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  ->  D  e.  T )
6853, 13tendoi2 31592 . . . . . . . . . . . . 13  |-  ( ( t  e.  E  /\  D  e.  T )  ->  ( ( N `  t ) `  D
)  =  `' ( t `  D ) )
6944, 67, 68syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( ( N `  t ) `  D
)  =  `' ( t `  D ) )
702, 13, 35tendocnv 31819 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  D  e.  T
)  ->  `' (
t `  D )  =  ( t `  `' D ) )
7145, 44, 67, 70syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  ->  `' ( t `  D )  =  ( t `  `' D
) )
7269, 71eqtr2d 2469 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( t `  `' D )  =  ( ( N `  t
) `  D )
)
7372coeq2d 5035 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( ( t `  G )  o.  (
t `  `' D
) )  =  ( ( t `  G
)  o.  ( ( N `  t ) `
 D ) ) )
7465, 66, 733eqtr3d 2476 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
f  =  ( ( t `  G )  o.  ( ( N `
 t ) `  D ) ) )
75 simplrr 738 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
s  =  .0.  )
76 dihjatcc.d . . . . . . . . . . . 12  |-  J  =  ( a  e.  E ,  b  e.  E  |->  ( d  e.  T  |->  ( ( a `  d )  o.  (
b `  d )
) ) )
77 dihjatcc.o . . . . . . . . . . . 12  |-  .0.  =  ( d  e.  T  |->  (  _I  |`  B ) )
782, 13, 35, 53, 28, 76, 77tendoipl2 31595 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E
)  ->  ( t J ( N `  t ) )  =  .0.  )
7945, 44, 78syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
( t J ( N `  t ) )  =  .0.  )
8075, 79eqtr4d 2471 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  -> 
s  =  ( t J ( N `  t ) ) )
81 opeq1 3984 . . . . . . . . . . . . . . 15  |-  ( g  =  ( t `  G )  ->  <. g ,  t >.  =  <. ( t `  G ) ,  t >. )
8281eleq1d 2502 . . . . . . . . . . . . . 14  |-  ( g  =  ( t `  G )  ->  ( <. g ,  t >.  e.  ( I `  P
)  <->  <. ( t `  G ) ,  t
>.  e.  ( I `  P ) ) )
8382anbi1d 686 . . . . . . . . . . . . 13  |-  ( g  =  ( t `  G )  ->  (
( <. g ,  t
>.  e.  ( I `  P )  /\  <. h ,  u >.  e.  ( I `  Q ) )  <->  ( <. (
t `  G ) ,  t >.  e.  ( I `  P )  /\  <. h ,  u >.  e.  ( I `  Q ) ) ) )
84 coeq1 5030 . . . . . . . . . . . . . . 15  |-  ( g  =  ( t `  G )  ->  (
g  o.  h )  =  ( ( t `
 G )  o.  h ) )
8584eqeq2d 2447 . . . . . . . . . . . . . 14  |-  ( g  =  ( t `  G )  ->  (
f  =  ( g  o.  h )  <->  f  =  ( ( t `  G )  o.  h
) ) )
8685anbi1d 686 . . . . . . . . . . . . 13  |-  ( g  =  ( t `  G )  ->  (
( f  =  ( g  o.  h )  /\  s  =  ( t J u ) )  <->  ( f  =  ( ( t `  G )  o.  h
)  /\  s  =  ( t J u ) ) ) )
8783, 86anbi12d 692 . . . . . . . . . . . 12  |-  ( g  =  ( t `  G )  ->  (
( ( <. g ,  t >.  e.  ( I `  P )  /\  <. h ,  u >.  e.  ( I `  Q ) )  /\  ( f  =  ( g  o.  h )  /\  s  =  ( t J u ) ) )  <->  ( ( <. ( t `  G
) ,  t >.  e.  ( I `  P
)  /\  <. h ,  u >.  e.  (
I `  Q )
)  /\  ( f  =  ( ( t `
 G )  o.  h )  /\  s  =  ( t J u ) ) ) ) )
88 opeq1 3984 . . . . . . . . . . . . . . 15  |-  ( h  =  ( ( N `
 t ) `  D )  ->  <. h ,  u >.  =  <. ( ( N `  t
) `  D ) ,  u >. )
8988eleq1d 2502 . . . . . . . . . . . . . 14  |-  ( h  =  ( ( N `
 t ) `  D )  ->  ( <. h ,  u >.  e.  ( I `  Q
)  <->  <. ( ( N `
 t ) `  D ) ,  u >.  e.  ( I `  Q ) ) )
9089anbi2d 685 . . . . . . . . . . . . 13  |-  ( h  =  ( ( N `
 t ) `  D )  ->  (
( <. ( t `  G ) ,  t
>.  e.  ( I `  P )  /\  <. h ,  u >.  e.  ( I `  Q ) )  <->  ( <. (
t `  G ) ,  t >.  e.  ( I `  P )  /\  <. ( ( N `
 t ) `  D ) ,  u >.  e.  ( I `  Q ) ) ) )
91 coeq2 5031 . . . . . . . . . . . . . . 15  |-  ( h  =  ( ( N `
 t ) `  D )  ->  (
( t `  G
)  o.  h )  =  ( ( t `
 G )  o.  ( ( N `  t ) `  D
) ) )
9291eqeq2d 2447 . . . . . . . . . . . . . 14  |-  ( h  =  ( ( N `
 t ) `  D )  ->  (
f  =  ( ( t `  G )  o.  h )  <->  f  =  ( ( t `  G )  o.  (
( N `  t
) `  D )
) ) )
9392anbi1d 686 . . . . . . . . . . . . 13  |-  ( h  =  ( ( N `
 t ) `  D )  ->  (
( f  =  ( ( t `  G
)  o.  h )  /\  s  =  ( t J u ) )  <->  ( f  =  ( ( t `  G )  o.  (
( N `  t
) `  D )
)  /\  s  =  ( t J u ) ) ) )
9490, 93anbi12d 692 . . . . . . . . . . . 12  |-  ( h  =  ( ( N `
 t ) `  D )  ->  (
( ( <. (
t `  G ) ,  t >.  e.  ( I `  P )  /\  <. h ,  u >.  e.  ( I `  Q ) )  /\  ( f  =  ( ( t `  G
)  o.  h )  /\  s  =  ( t J u ) ) )  <->  ( ( <. ( t `  G
) ,  t >.  e.  ( I `  P
)  /\  <. ( ( N `  t ) `
 D ) ,  u >.  e.  (
I `  Q )
)  /\  ( f  =  ( ( t `
 G )  o.  ( ( N `  t ) `  D
) )  /\  s  =  ( t J u ) ) ) ) )
95 opeq2 3985 . . . . . . . . . . . . . . 15  |-  ( u  =  ( N `  t )  ->  <. (
( N `  t
) `  D ) ,  u >.  =  <. ( ( N `  t
) `  D ) ,  ( N `  t ) >. )
9695eleq1d 2502 . . . . . . . . . . . . . 14  |-  ( u  =  ( N `  t )  ->  ( <. ( ( N `  t ) `  D
) ,  u >.  e.  ( I `  Q
)  <->  <. ( ( N `
 t ) `  D ) ,  ( N `  t )
>.  e.  ( I `  Q ) ) )
9796anbi2d 685 . . . . . . . . . . . . 13  |-  ( u  =  ( N `  t )  ->  (
( <. ( t `  G ) ,  t
>.  e.  ( I `  P )  /\  <. ( ( N `  t
) `  D ) ,  u >.  e.  (
I `  Q )
)  <->  ( <. (
t `  G ) ,  t >.  e.  ( I `  P )  /\  <. ( ( N `
 t ) `  D ) ,  ( N `  t )
>.  e.  ( I `  Q ) ) ) )
98 oveq2 6089 . . . . . . . . . . . . . . 15  |-  ( u  =  ( N `  t )  ->  (
t J u )  =  ( t J ( N `  t
) ) )
9998eqeq2d 2447 . . . . . . . . . . . . . 14  |-  ( u  =  ( N `  t )  ->  (
s  =  ( t J u )  <->  s  =  ( t J ( N `  t ) ) ) )
10099anbi2d 685 . . . . . . . . . . . . 13  |-  ( u  =  ( N `  t )  ->  (
( f  =  ( ( t `  G
)  o.  ( ( N `  t ) `
 D ) )  /\  s  =  ( t J u ) )  <->  ( f  =  ( ( t `  G )  o.  (
( N `  t
) `  D )
)  /\  s  =  ( t J ( N `  t ) ) ) ) )
10197, 100anbi12d 692 . . . . . . . . . . . 12  |-  ( u  =  ( N `  t )  ->  (
( ( <. (
t `  G ) ,  t >.  e.  ( I `  P )  /\  <. ( ( N `
 t ) `  D ) ,  u >.  e.  ( I `  Q ) )  /\  ( f  =  ( ( t `  G
)  o.  ( ( N `  t ) `
 D ) )  /\  s  =  ( t J u ) ) )  <->  ( ( <. ( t `  G
) ,  t >.  e.  ( I `  P
)  /\  <. ( ( N `  t ) `
 D ) ,  ( N `  t
) >.  e.  ( I `
 Q ) )  /\  ( f  =  ( ( t `  G )  o.  (
( N `  t
) `  D )
)  /\  s  =  ( t J ( N `  t ) ) ) ) ) )
10287, 94, 101syl3an9b 1252 . . . . . . . . . . 11  |-  ( ( g  =  ( t `
 G )  /\  h  =  ( ( N `  t ) `  D )  /\  u  =  ( N `  t ) )  -> 
( ( ( <.
g ,  t >.  e.  ( I `  P
)  /\  <. h ,  u >.  e.  (
I `  Q )
)  /\  ( f  =  ( g  o.  h )  /\  s  =  ( t J u ) ) )  <-> 
( ( <. (
t `  G ) ,  t >.  e.  ( I `  P )  /\  <. ( ( N `
 t ) `  D ) ,  ( N `  t )
>.  e.  ( I `  Q ) )  /\  ( f  =  ( ( t `  G
)  o.  ( ( N `  t ) `
 D ) )  /\  s  =  ( t J ( N `
 t ) ) ) ) ) )
103102spc3egv 3040 . . . . . . . . . 10  |-  ( ( ( t `  G
)  e.  _V  /\  ( ( N `  t ) `  D
)  e.  _V  /\  ( N `  t )  e.  _V )  -> 
( ( ( <.
( t `  G
) ,  t >.  e.  ( I `  P
)  /\  <. ( ( N `  t ) `
 D ) ,  ( N `  t
) >.  e.  ( I `
 Q ) )  /\  ( f  =  ( ( t `  G )  o.  (
( N `  t
) `  D )
)  /\  s  =  ( t J ( N `  t ) ) ) )  ->  E. g E. h E. u ( ( <.
g ,  t >.  e.  ( I `  P
)  /\  <. h ,  u >.  e.  (
I `  Q )
)  /\  ( f  =  ( g  o.  h )  /\  s  =  ( t J u ) ) ) ) )
10447, 57, 58, 103mp3an 1279 . . . . . . . . 9  |-  ( ( ( <. ( t `  G ) ,  t
>.  e.  ( I `  P )  /\  <. ( ( N `  t
) `  D ) ,  ( N `  t ) >.  e.  ( I `  Q ) )  /\  ( f  =  ( ( t `
 G )  o.  ( ( N `  t ) `  D
) )  /\  s  =  ( t J ( N `  t
) ) ) )  ->  E. g E. h E. u ( ( <.
g ,  t >.  e.  ( I `  P
)  /\  <. h ,  u >.  e.  (
I `  Q )
)  /\  ( f  =  ( g  o.  h )  /\  s  =  ( t J u ) ) ) )
10551, 61, 74, 80, 104syl22anc 1185 . . . . . . . 8  |-  ( ( ( ph  /\  (
( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
)  /\  ( t  e.  E  /\  (
t `  ( G  o.  `' D ) )  =  f ) )  ->  E. g E. h E. u ( ( <.
g ,  t >.  e.  ( I `  P
)  /\  <. h ,  u >.  e.  (
I `  Q )
)  /\  ( f  =  ( g  o.  h )  /\  s  =  ( t J u ) ) ) )
106105ex 424 . . . . . . 7  |-  ( (
ph  /\  ( (
f  e.  T  /\  ( R `  f ) 
.<_  V )  /\  s  =  .0.  ) )  -> 
( ( t  e.  E  /\  ( t `
 ( G  o.  `' D ) )  =  f )  ->  E. g E. h E. u ( ( <. g ,  t
>.  e.  ( I `  P )  /\  <. h ,  u >.  e.  ( I `  Q ) )  /\  ( f  =  ( g  o.  h )  /\  s  =  ( t J u ) ) ) ) )
107106eximdv 1632 . . . . . 6  |-  ( (
ph  /\  ( (
f  e.  T  /\  ( R `  f ) 
.<_  V )  /\  s  =  .0.  ) )  -> 
( E. t ( t  e.  E  /\  ( t `  ( G  o.  `' D
) )  =  f )  ->  E. t E. g E. h E. u ( ( <.
g ,  t >.  e.  ( I `  P
)  /\  <. h ,  u >.  e.  (
I `  Q )
)  /\  ( f  =  ( g  o.  h )  /\  s  =  ( t J u ) ) ) ) )
108 excom 1756 . . . . . 6  |-  ( E. t E. g E. h E. u ( ( <. g ,  t
>.  e.  ( I `  P )  /\  <. h ,  u >.  e.  ( I `  Q ) )  /\  ( f  =  ( g  o.  h )  /\  s  =  ( t J u ) ) )  <->  E. g E. t E. h E. u ( ( <. g ,  t
>.  e.  ( I `  P )  /\  <. h ,  u >.  e.  ( I `  Q ) )  /\  ( f  =  ( g  o.  h )  /\  s  =  ( t J u ) ) ) )
109107, 108syl6ib 218 . . . . 5  |-  ( (
ph  /\  ( (
f  e.  T  /\  ( R `  f ) 
.<_  V )  /\  s  =  .0.  ) )  -> 
( E. t ( t  e.  E  /\  ( t `  ( G  o.  `' D
) )  =  f )  ->  E. g E. t E. h E. u ( ( <.
g ,  t >.  e.  ( I `  P
)  /\  <. h ,  u >.  e.  (
I `  Q )
)  /\  ( f  =  ( g  o.  h )  /\  s  =  ( t J u ) ) ) ) )
11042, 109mpd 15 . . . 4  |-  ( (
ph  /\  ( (
f  e.  T  /\  ( R `  f ) 
.<_  V )  /\  s  =  .0.  ) )  ->  E. g E. t E. h E. u ( ( <. g ,  t
>.  e.  ( I `  P )  /\  <. h ,  u >.  e.  ( I `  Q ) )  /\  ( f  =  ( g  o.  h )  /\  s  =  ( t J u ) ) ) )
111110ex 424 . . 3  |-  ( ph  ->  ( ( ( f  e.  T  /\  ( R `  f )  .<_  V )  /\  s  =  .0.  )  ->  E. g E. t E. h E. u ( ( <.
g ,  t >.  e.  ( I `  P
)  /\  <. h ,  u >.  e.  (
I `  Q )
)  /\  ( f  =  ( g  o.  h )  /\  s  =  ( t J u ) ) ) ) )
1121simpld 446 . . . . . . . . 9  |-  ( ph  ->  K  e.  HL )
113 hllat 30161 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
114112, 113syl 16 . . . . . . . 8  |-  ( ph  ->  K  e.  Lat )
11512simpld 446 . . . . . . . . 9  |-  ( ph  ->  P  e.  A )
11617simpld 446 . . . . . . . . 9  |-  ( ph  ->  Q  e.  A )
11728, 29, 8hlatjcl 30164 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  B )
118112, 115, 116, 117syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  Q
)  e.  B )
1191simprd 450 . . . . . . . . 9  |-  ( ph  ->  W  e.  H )
12028, 2lhpbase 30795 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  B )
121119, 120syl 16 . . . . . . . 8  |-  ( ph  ->  W  e.  B )
12228, 30latmcl 14480 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  B  /\  W  e.  B )  ->  (
( P  .\/  Q
)  ./\  W )  e.  B )
123114, 118, 121, 122syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  Q )  ./\  W )  e.  B )
12433, 123syl5eqel 2520 . . . . . 6  |-  ( ph  ->  V  e.  B )
12528, 7, 30latmle2 14506 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  B  /\  W  e.  B )  ->  (
( P  .\/  Q
)  ./\  W )  .<_  W )
126114, 118, 121, 125syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
12733, 126syl5eqbr 4245 . . . . . 6  |-  ( ph  ->  V  .<_  W )
128 eqid 2436 . . . . . . 7  |-  ( (
DIsoB `  K ) `  W )  =  ( ( DIsoB `  K ) `  W )
12928, 7, 2, 3, 128dihvalb 32035 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( V  e.  B  /\  V  .<_  W ) )  ->  (
I `  V )  =  ( ( (
DIsoB `  K ) `  W ) `  V
) )
1301, 124, 127, 129syl12anc 1182 . . . . 5  |-  ( ph  ->  ( I `  V
)  =  ( ( ( DIsoB `  K ) `  W ) `  V
) )
131130eleq2d 2503 . . . 4  |-  ( ph  ->  ( <. f ,  s
>.  e.  ( I `  V )  <->  <. f ,  s >.  e.  (
( ( DIsoB `  K
) `  W ) `  V ) ) )
13228, 7, 2, 13, 34, 77, 128dibopelval3 31946 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( V  e.  B  /\  V  .<_  W ) )  ->  ( <. f ,  s >.  e.  ( ( ( DIsoB `  K ) `  W
) `  V )  <->  ( ( f  e.  T  /\  ( R `  f
)  .<_  V )  /\  s  =  .0.  )
) )
1331, 124, 127, 132syl12anc 1182 . . . 4  |-  ( ph  ->  ( <. f ,  s
>.  e.  ( ( (
DIsoB `  K ) `  W ) `  V
)  <->  ( ( f  e.  T  /\  ( R `  f )  .<_  V )  /\  s  =  .0.  ) ) )
134131, 133bitrd 245 . . 3  |-  ( ph  ->  ( <. f ,  s
>.  e.  ( I `  V )  <->  ( (
f  e.  T  /\  ( R `  f ) 
.<_  V )  /\  s  =  .0.  ) ) )
135 eqid 2436 . . . 4  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
13628, 8atbase 30087 . . . . 5  |-  ( P  e.  A  ->  P  e.  B )
137115, 136syl 16 . . . 4  |-  ( ph  ->  P  e.  B )
13828, 8atbase 30087 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  B )
139116, 138syl 16 . . . 4  |-  ( ph  ->  Q  e.  B )
14028, 2, 13, 35, 76, 31, 135, 32, 3, 1, 137, 139dihopellsm 32053 . . 3  |-  ( ph  ->  ( <. f ,  s
>.  e.  ( ( I `
 P )  .(+)  ( I `  Q ) )  <->  E. g E. t E. h E. u ( ( <. g ,  t
>.  e.  ( I `  P )  /\  <. h ,  u >.  e.  ( I `  Q ) )  /\  ( f  =  ( g  o.  h )  /\  s  =  ( t J u ) ) ) ) )
141111, 134, 1403imtr4d 260 . 2  |-  ( ph  ->  ( <. f ,  s
>.  e.  ( I `  V )  ->  <. f ,  s >.  e.  ( ( I `  P
)  .(+)  ( I `  Q ) ) ) )
1425, 141relssdv 4968 1  |-  ( ph  ->  ( I `  V
)  C_  ( (
I `  P )  .(+)  ( I `  Q
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   E.wrex 2706   _Vcvv 2956    C_ wss 3320   <.cop 3817   class class class wbr 4212    e. cmpt 4266    _I cid 4493   `'ccnv 4877    |` cres 4880    o. ccom 4882   Rel wrel 4883   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   iota_crio 6542   Basecbs 13469   lecple 13536   occoc 13537   joincjn 14401   meetcmee 14402   Latclat 14474   LSSumclsm 15268   LSubSpclss 16008   Atomscatm 30061   HLchlt 30148   LHypclh 30781   LTrncltrn 30898   trLctrl 30955   TEndoctendo 31549   DVecHcdvh 31876   DIsoBcdib 31936   DIsoHcdih 32026
This theorem is referenced by:  dihjatcc  32220
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-tpos 6479  df-undef 6543  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-sca 13545  df-vsca 13546  df-0g 13727  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-p1 14469  df-lat 14475  df-clat 14537  df-mnd 14690  df-submnd 14739  df-grp 14812  df-minusg 14813  df-sbg 14814  df-subg 14941  df-cntz 15116  df-lsm 15270  df-cmn 15414  df-abl 15415  df-mgp 15649  df-rng 15663  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-invr 15777  df-dvr 15788  df-drng 15837  df-lmod 15952  df-lss 16009  df-lsp 16048  df-lvec 16175  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-llines 30295  df-lplanes 30296  df-lvols 30297  df-lines 30298  df-psubsp 30300  df-pmap 30301  df-padd 30593  df-lhyp 30785  df-laut 30786  df-ldil 30901  df-ltrn 30902  df-trl 30956  df-tendo 31552  df-edring 31554  df-disoa 31827  df-dvech 31877  df-dib 31937  df-dic 31971  df-dih 32027
  Copyright terms: Public domain W3C validator