Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihjustlem Unicode version

Theorem dihjustlem 31382
Description: Part of proof after Lemma N of [Crawley] p. 122 line 4, "the definition of phi(x) is independent of the atom q." (Contributed by NM, 2-Mar-2014.)
Hypotheses
Ref Expression
dihjust.b  |-  B  =  ( Base `  K
)
dihjust.l  |-  .<_  =  ( le `  K )
dihjust.j  |-  .\/  =  ( join `  K )
dihjust.m  |-  ./\  =  ( meet `  K )
dihjust.a  |-  A  =  ( Atoms `  K )
dihjust.h  |-  H  =  ( LHyp `  K
)
dihjust.i  |-  I  =  ( ( DIsoB `  K
) `  W )
dihjust.J  |-  J  =  ( ( DIsoC `  K
) `  W )
dihjust.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihjust.s  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
dihjustlem  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( ( J `  Q )  .(+)  ( I `  ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `  ( X  ./\  W ) ) ) )

Proof of Theorem dihjustlem
StepHypRef Expression
1 simp1l 981 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  K  e.  HL )
2 hllat 29529 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  K  e.  Lat )
4 simp21l 1074 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  Q  e.  A )
5 dihjust.b . . . . . . 7  |-  B  =  ( Base `  K
)
6 dihjust.a . . . . . . 7  |-  A  =  ( Atoms `  K )
75, 6atbase 29455 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  B )
84, 7syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  Q  e.  B )
9 simp23 992 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  X  e.  B )
10 simp1r 982 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  W  e.  H )
11 dihjust.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
125, 11lhpbase 30163 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  B )
1310, 12syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  W  e.  B )
14 dihjust.m . . . . . . 7  |-  ./\  =  ( meet `  K )
155, 14latmcl 14400 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  e.  B )
163, 9, 13, 15syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( X  ./\ 
W )  e.  B
)
17 dihjust.l . . . . . 6  |-  .<_  =  ( le `  K )
18 dihjust.j . . . . . 6  |-  .\/  =  ( join `  K )
195, 17, 18latlej1 14409 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  ( X  ./\  W )  e.  B )  ->  Q  .<_  ( Q  .\/  ( X  ./\  W ) ) )
203, 8, 16, 19syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  Q  .<_  ( Q  .\/  ( X 
./\  W ) ) )
21 simp3 959 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )
2220, 21breqtrd 4170 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  Q  .<_  ( R  .\/  ( X 
./\  W ) ) )
23 simp1 957 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
24 simp22 991 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
25 simp21 990 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
265, 17, 14latmle2 14426 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  .<_  W )
273, 9, 13, 26syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( X  ./\ 
W )  .<_  W )
2816, 27jca 519 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( ( X  ./\  W )  e.  B  /\  ( X 
./\  W )  .<_  W ) )
29 dihjust.i . . . . 5  |-  I  =  ( ( DIsoB `  K
) `  W )
30 dihjust.J . . . . 5  |-  J  =  ( ( DIsoC `  K
) `  W )
31 dihjust.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
32 dihjust.s . . . . 5  |-  .(+)  =  (
LSSum `  U )
335, 17, 18, 6, 11, 29, 30, 31, 32cdlemn 31378 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( ( X 
./\  W )  e.  B  /\  ( X 
./\  W )  .<_  W ) ) )  ->  ( Q  .<_  ( R  .\/  ( X 
./\  W ) )  <-> 
( J `  Q
)  C_  ( ( J `  R )  .(+)  ( I `  ( X  ./\  W ) ) ) ) )
3423, 24, 25, 28, 33syl13anc 1186 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( Q  .<_  ( R  .\/  ( X  ./\  W ) )  <-> 
( J `  Q
)  C_  ( ( J `  R )  .(+)  ( I `  ( X  ./\  W ) ) ) ) )
3522, 34mpbid 202 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( J `  Q )  C_  (
( J `  R
)  .(+)  ( I `  ( X  ./\  W ) ) ) )
3611, 31, 23dvhlmod 31276 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  U  e.  LMod )
37 eqid 2380 . . . . . 6  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
3837lsssssubg 15954 . . . . 5  |-  ( U  e.  LMod  ->  ( LSubSp `  U )  C_  (SubGrp `  U ) )
3936, 38syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( LSubSp `  U )  C_  (SubGrp `  U ) )
4017, 6, 11, 31, 30, 37diclss 31359 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( J `  R
)  e.  ( LSubSp `  U ) )
4123, 24, 40syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( J `  R )  e.  (
LSubSp `  U ) )
4239, 41sseldd 3285 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( J `  R )  e.  (SubGrp `  U ) )
435, 17, 11, 31, 29, 37diblss 31336 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( X 
./\  W )  e.  B  /\  ( X 
./\  W )  .<_  W ) )  -> 
( I `  ( X  ./\  W ) )  e.  ( LSubSp `  U
) )
4423, 16, 27, 43syl12anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( I `  ( X  ./\  W
) )  e.  (
LSubSp `  U ) )
4539, 44sseldd 3285 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( I `  ( X  ./\  W
) )  e.  (SubGrp `  U ) )
4632lsmub2 15211 . . 3  |-  ( ( ( J `  R
)  e.  (SubGrp `  U )  /\  (
I `  ( X  ./\ 
W ) )  e.  (SubGrp `  U )
)  ->  ( I `  ( X  ./\  W
) )  C_  (
( J `  R
)  .(+)  ( I `  ( X  ./\  W ) ) ) )
4742, 45, 46syl2anc 643 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( I `  ( X  ./\  W
) )  C_  (
( J `  R
)  .(+)  ( I `  ( X  ./\  W ) ) ) )
4817, 6, 11, 31, 30, 37diclss 31359 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( J `  Q
)  e.  ( LSubSp `  U ) )
4923, 25, 48syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( J `  Q )  e.  (
LSubSp `  U ) )
5039, 49sseldd 3285 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( J `  Q )  e.  (SubGrp `  U ) )
5137, 32lsmcl 16075 . . . . 5  |-  ( ( U  e.  LMod  /\  ( J `  R )  e.  ( LSubSp `  U )  /\  ( I `  ( X  ./\  W ) )  e.  ( LSubSp `  U
) )  ->  (
( J `  R
)  .(+)  ( I `  ( X  ./\  W ) ) )  e.  (
LSubSp `  U ) )
5236, 41, 44, 51syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( ( J `  R )  .(+)  ( I `  ( X  ./\  W ) ) )  e.  ( LSubSp `  U ) )
5339, 52sseldd 3285 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( ( J `  R )  .(+)  ( I `  ( X  ./\  W ) ) )  e.  (SubGrp `  U ) )
5432lsmlub 15217 . . 3  |-  ( ( ( J `  Q
)  e.  (SubGrp `  U )  /\  (
I `  ( X  ./\ 
W ) )  e.  (SubGrp `  U )  /\  ( ( J `  R )  .(+)  ( I `
 ( X  ./\  W ) ) )  e.  (SubGrp `  U )
)  ->  ( (
( J `  Q
)  C_  ( ( J `  R )  .(+)  ( I `  ( X  ./\  W ) ) )  /\  ( I `
 ( X  ./\  W ) )  C_  (
( J `  R
)  .(+)  ( I `  ( X  ./\  W ) ) ) )  <->  ( ( J `  Q )  .(+)  ( I `  ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `  ( X  ./\  W ) ) ) ) )
5550, 45, 53, 54syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( (
( J `  Q
)  C_  ( ( J `  R )  .(+)  ( I `  ( X  ./\  W ) ) )  /\  ( I `
 ( X  ./\  W ) )  C_  (
( J `  R
)  .(+)  ( I `  ( X  ./\  W ) ) ) )  <->  ( ( J `  Q )  .(+)  ( I `  ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `  ( X  ./\  W ) ) ) ) )
5635, 47, 55mpbi2and 888 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B
)  /\  ( Q  .\/  ( X  ./\  W
) )  =  ( R  .\/  ( X 
./\  W ) ) )  ->  ( ( J `  Q )  .(+)  ( I `  ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `  ( X  ./\  W ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    C_ wss 3256   class class class wbr 4146   ` cfv 5387  (class class class)co 6013   Basecbs 13389   lecple 13456   joincjn 14321   meetcmee 14322   Latclat 14394  SubGrpcsubg 14858   LSSumclsm 15188   LModclmod 15870   LSubSpclss 15928   Atomscatm 29429   HLchlt 29516   LHypclh 30149   DVecHcdvh 31244   DIsoBcdib 31304   DIsoCcdic 31338
This theorem is referenced by:  dihjust  31383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-tpos 6408  df-undef 6472  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-map 6949  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-n0 10147  df-z 10208  df-uz 10414  df-fz 10969  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-sca 13465  df-vsca 13466  df-0g 13647  df-poset 14323  df-plt 14335  df-lub 14351  df-glb 14352  df-join 14353  df-meet 14354  df-p0 14388  df-p1 14389  df-lat 14395  df-clat 14457  df-mnd 14610  df-submnd 14659  df-grp 14732  df-minusg 14733  df-sbg 14734  df-subg 14861  df-cntz 15036  df-lsm 15190  df-cmn 15334  df-abl 15335  df-mgp 15569  df-rng 15583  df-ur 15585  df-oppr 15648  df-dvdsr 15666  df-unit 15667  df-invr 15697  df-dvr 15708  df-drng 15757  df-lmod 15872  df-lss 15929  df-lsp 15968  df-lvec 16095  df-oposet 29342  df-ol 29344  df-oml 29345  df-covers 29432  df-ats 29433  df-atl 29464  df-cvlat 29488  df-hlat 29517  df-llines 29663  df-lplanes 29664  df-lvols 29665  df-lines 29666  df-psubsp 29668  df-pmap 29669  df-padd 29961  df-lhyp 30153  df-laut 30154  df-ldil 30269  df-ltrn 30270  df-trl 30324  df-tendo 30920  df-edring 30922  df-disoa 31195  df-dvech 31245  df-dib 31305  df-dic 31339
  Copyright terms: Public domain W3C validator