Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihval Structured version   Unicode version

Theorem dihval 31967
Description: Value of isomorphism H for a lattice  K. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 3-Feb-2014.)
Hypotheses
Ref Expression
dihval.b  |-  B  =  ( Base `  K
)
dihval.l  |-  .<_  =  ( le `  K )
dihval.j  |-  .\/  =  ( join `  K )
dihval.m  |-  ./\  =  ( meet `  K )
dihval.a  |-  A  =  ( Atoms `  K )
dihval.h  |-  H  =  ( LHyp `  K
)
dihval.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihval.d  |-  D  =  ( ( DIsoB `  K
) `  W )
dihval.c  |-  C  =  ( ( DIsoC `  K
) `  W )
dihval.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihval.s  |-  S  =  ( LSubSp `  U )
dihval.p  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
dihval  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  B )  ->  (
I `  X )  =  if ( X  .<_  W ,  ( D `  X ) ,  (
iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) ) )
Distinct variable groups:    A, q    u, q, K    u, S    W, q, u    X, q, u
Allowed substitution hints:    A( u)    B( u, q)    C( u, q)    D( u, q)    .(+) ( u, q)    S( q)    U( u, q)    H( u, q)    I( u, q)    .\/ ( u, q)    .<_ ( u, q)    ./\ ( u, q)    V( u, q)

Proof of Theorem dihval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dihval.b . . . 4  |-  B  =  ( Base `  K
)
2 dihval.l . . . 4  |-  .<_  =  ( le `  K )
3 dihval.j . . . 4  |-  .\/  =  ( join `  K )
4 dihval.m . . . 4  |-  ./\  =  ( meet `  K )
5 dihval.a . . . 4  |-  A  =  ( Atoms `  K )
6 dihval.h . . . 4  |-  H  =  ( LHyp `  K
)
7 dihval.i . . . 4  |-  I  =  ( ( DIsoH `  K
) `  W )
8 dihval.d . . . 4  |-  D  =  ( ( DIsoB `  K
) `  W )
9 dihval.c . . . 4  |-  C  =  ( ( DIsoC `  K
) `  W )
10 dihval.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
11 dihval.s . . . 4  |-  S  =  ( LSubSp `  U )
12 dihval.p . . . 4  |-  .(+)  =  (
LSSum `  U )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihfval 31966 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) ) )
1413fveq1d 5722 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( I `  X
)  =  ( ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) ) `  X
) )
15 breq1 4207 . . . 4  |-  ( x  =  X  ->  (
x  .<_  W  <->  X  .<_  W ) )
16 fveq2 5720 . . . 4  |-  ( x  =  X  ->  ( D `  x )  =  ( D `  X ) )
17 oveq1 6080 . . . . . . . . . 10  |-  ( x  =  X  ->  (
x  ./\  W )  =  ( X  ./\  W ) )
1817oveq2d 6089 . . . . . . . . 9  |-  ( x  =  X  ->  (
q  .\/  ( x  ./\ 
W ) )  =  ( q  .\/  ( X  ./\  W ) ) )
19 id 20 . . . . . . . . 9  |-  ( x  =  X  ->  x  =  X )
2018, 19eqeq12d 2449 . . . . . . . 8  |-  ( x  =  X  ->  (
( q  .\/  (
x  ./\  W )
)  =  x  <->  ( q  .\/  ( X  ./\  W
) )  =  X ) )
2120anbi2d 685 . . . . . . 7  |-  ( x  =  X  ->  (
( -.  q  .<_  W  /\  ( q  .\/  ( x  ./\  W ) )  =  x )  <-> 
( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )
2217fveq2d 5724 . . . . . . . . 9  |-  ( x  =  X  ->  ( D `  ( x  ./\ 
W ) )  =  ( D `  ( X  ./\  W ) ) )
2322oveq2d 6089 . . . . . . . 8  |-  ( x  =  X  ->  (
( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) )  =  ( ( C `  q
)  .(+)  ( D `  ( X  ./\  W ) ) ) )
2423eqeq2d 2446 . . . . . . 7  |-  ( x  =  X  ->  (
u  =  ( ( C `  q ) 
.(+)  ( D `  ( x  ./\  W ) ) )  <->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) )
2521, 24imbi12d 312 . . . . . 6  |-  ( x  =  X  ->  (
( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) )  <-> 
( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) )
2625ralbidv 2717 . . . . 5  |-  ( x  =  X  ->  ( A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) )  <->  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) )
2726riotabidv 6543 . . . 4  |-  ( x  =  X  ->  ( iota_ u  e.  S A. q  e.  A  (
( -.  q  .<_  W  /\  ( q  .\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) )  =  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )
2815, 16, 27ifbieq12d 3753 . . 3  |-  ( x  =  X  ->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) )  =  if ( X  .<_  W , 
( D `  X
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) ) )
29 eqid 2435 . . 3  |-  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) )  =  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) )
30 fvex 5734 . . . 4  |-  ( D `
 X )  e. 
_V
31 riotaex 6545 . . . 4  |-  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) )  e. 
_V
3230, 31ifex 3789 . . 3  |-  if ( X  .<_  W , 
( D `  X
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )  e.  _V
3328, 29, 32fvmpt 5798 . 2  |-  ( X  e.  B  ->  (
( x  e.  B  |->  if ( x  .<_  W ,  ( D `  x ) ,  (
iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) ) ) ) ) `  X )  =  if ( X  .<_  W , 
( D `  X
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) ) )
3414, 33sylan9eq 2487 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  B )  ->  (
I `  X )  =  if ( X  .<_  W ,  ( D `  X ) ,  (
iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   ifcif 3731   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   iota_crio 6534   Basecbs 13461   lecple 13528   joincjn 14393   meetcmee 14394   LSSumclsm 15260   LSubSpclss 16000   Atomscatm 29998   LHypclh 30718   DVecHcdvh 31813   DIsoBcdib 31873   DIsoCcdic 31907   DIsoHcdih 31963
This theorem is referenced by:  dihvalc  31968  dihvalb  31972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-riota 6541  df-dih 31964
  Copyright terms: Public domain W3C validator