Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophrex Structured version   Unicode version

Theorem diophrex 26834
Description: Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
diophrex  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  { t  |  E. u  e.  S  t  =  ( u  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
Distinct variable groups:    t, N, u    t, S, u
Allowed substitution hints:    M( u, t)

Proof of Theorem diophrex
Dummy variables  a 
b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2442 . . . . 5  |-  ( a  =  t  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  t  =  ( b  |`  (
1 ... N ) ) ) )
21rexbidv 2726 . . . 4  |-  ( a  =  t  ->  ( E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) )  <->  E. b  e.  S  t  =  ( b  |`  (
1 ... N ) ) ) )
3 reseq1 5140 . . . . . 6  |-  ( b  =  u  ->  (
b  |`  ( 1 ... N ) )  =  ( u  |`  (
1 ... N ) ) )
43eqeq2d 2447 . . . . 5  |-  ( b  =  u  ->  (
t  =  ( b  |`  ( 1 ... N
) )  <->  t  =  ( u  |`  ( 1 ... N ) ) ) )
54cbvrexv 2933 . . . 4  |-  ( E. b  e.  S  t  =  ( b  |`  ( 1 ... N
) )  <->  E. u  e.  S  t  =  ( u  |`  ( 1 ... N ) ) )
62, 5syl6bb 253 . . 3  |-  ( a  =  t  ->  ( E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) )  <->  E. u  e.  S  t  =  ( u  |`  ( 1 ... N ) ) ) )
76cbvabv 2555 . 2  |-  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N ) ) }  =  { t  |  E. u  e.  S  t  =  ( u  |`  ( 1 ... N ) ) }
8 eldioph3b 26823 . . . . 5  |-  ( S  e.  (Dioph `  M
)  <->  ( M  e. 
NN0  /\  E. c  e.  (mzPoly `  NN ) S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } ) )
98simprbi 451 . . . 4  |-  ( S  e.  (Dioph `  M
)  ->  E. c  e.  (mzPoly `  NN ) S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } )
1093ad2ant3 980 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  E. c  e.  (mzPoly `  NN ) S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } )
11 rexeq 2905 . . . . . . . 8  |-  ( S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) }  ->  ( E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) )  <->  E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } a  =  ( b  |`  ( 1 ... N
) ) ) )
1211abbidv 2550 . . . . . . 7  |-  ( S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) }  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N ) ) }  =  { a  |  E. b  e. 
{ d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } a  =  ( b  |`  ( 1 ... N
) ) } )
1312adantl 453 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M ) )  /\  c  e.  (mzPoly `  NN ) )  /\  S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } )  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  =  { a  |  E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) } )
14 eqeq1 2442 . . . . . . . . . . . . 13  |-  ( d  =  b  ->  (
d  =  ( e  |`  ( 1 ... M
) )  <->  b  =  ( e  |`  (
1 ... M ) ) ) )
1514anbi1d 686 . . . . . . . . . . . 12  |-  ( d  =  b  ->  (
( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  <->  ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) ) )
1615rexbidv 2726 . . . . . . . . . . 11  |-  ( d  =  b  ->  ( E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  <->  E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) ) )
1716rexab 3097 . . . . . . . . . 10  |-  ( E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) )  <->  E. b ( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
18 r19.41v 2861 . . . . . . . . . . . 12  |-  ( E. e  e.  ( NN0 
^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
1918exbii 1592 . . . . . . . . . . 11  |-  ( E. b E. e  e.  ( NN0  ^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. b
( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
20 rexcom4 2975 . . . . . . . . . . . 12  |-  ( E. e  e.  ( NN0 
^m  NN ) E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. b E. e  e.  ( NN0  ^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
21 anass 631 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( b  =  ( e  |`  (
1 ... M ) )  /\  ( ( c `
 e )  =  0  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
2221exbii 1592 . . . . . . . . . . . . . . 15  |-  ( E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. b
( b  =  ( e  |`  ( 1 ... M ) )  /\  ( ( c `
 e )  =  0  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
23 vex 2959 . . . . . . . . . . . . . . . . 17  |-  e  e. 
_V
2423resex 5186 . . . . . . . . . . . . . . . 16  |-  ( e  |`  ( 1 ... M
) )  e.  _V
25 reseq1 5140 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  ( e  |`  ( 1 ... M
) )  ->  (
b  |`  ( 1 ... N ) )  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) )
2625eqeq2d 2447 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( e  |`  ( 1 ... M
) )  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) )
2726anbi2d 685 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( e  |`  ( 1 ... M
) )  ->  (
( ( c `  e )  =  0  /\  a  =  ( b  |`  ( 1 ... N ) ) )  <->  ( ( c `
 e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) ) )
2824, 27ceqsexv 2991 . . . . . . . . . . . . . . 15  |-  ( E. b ( b  =  ( e  |`  (
1 ... M ) )  /\  ( ( c `
 e )  =  0  /\  a  =  ( b  |`  (
1 ... N ) ) ) )  <->  ( (
c `  e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) )
2922, 28bitri 241 . . . . . . . . . . . . . 14  |-  ( E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  ( (
c `  e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) )
30 ancom 438 . . . . . . . . . . . . . . 15  |-  ( ( ( c `  e
)  =  0  /\  a  =  ( ( e  |`  ( 1 ... M ) )  |`  ( 1 ... N
) ) )  <->  ( a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) )
31 simpl2 961 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  M  e.  (
ZZ>= `  N ) )
32 fzss2 11092 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... M
) )
33 resabs1 5175 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1 ... N ) 
C_  ( 1 ... M )  ->  (
( e  |`  (
1 ... M ) )  |`  ( 1 ... N
) )  =  ( e  |`  ( 1 ... N ) ) )
3431, 32, 333syl 19 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  =  ( e  |`  ( 1 ... N
) ) )
3534eqeq2d 2447 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  <-> 
a  =  ( e  |`  ( 1 ... N
) ) ) )
3635anbi1d 686 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( ( a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 )  <->  ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
3730, 36syl5bb 249 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( ( ( c `  e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) )  <->  ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
3829, 37syl5bb 249 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b
( ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
3938rexbidv 2726 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. e  e.  ( NN0  ^m  NN ) E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4020, 39syl5bbr 251 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b E. e  e.  ( NN0  ^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  ( 1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4119, 40syl5bbr 251 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b
( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  ( 1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4217, 41syl5bb 249 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } a  =  ( b  |`  ( 1 ... N
) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4342abbidv 2550 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. b  e.  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) }  =  { a  |  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) } )
44 eldioph3 26824 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) }  e.  (Dioph `  N ) )
45443ad2antl1 1119 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  ( 1 ... N ) )  /\  ( c `  e )  =  0 ) }  e.  (Dioph `  N ) )
4643, 45eqeltrd 2510 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. b  e.  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) }  e.  (Dioph `  N ) )
4746adantr 452 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M ) )  /\  c  e.  (mzPoly `  NN ) )  /\  S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } )  ->  { a  |  E. b  e.  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) }  e.  (Dioph `  N ) )
4813, 47eqeltrd 2510 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M ) )  /\  c  e.  (mzPoly `  NN ) )  /\  S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } )  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
4948ex 424 . . . 4  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) }  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) ) )
5049rexlimdva 2830 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  ( E. c  e.  (mzPoly `  NN ) S  =  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) }  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N ) ) }  e.  (Dioph `  N ) ) )
5110, 50mpd 15 . 2  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
527, 51syl5eqelr 2521 1  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  { t  |  E. u  e.  S  t  =  ( u  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2422   E.wrex 2706    C_ wss 3320    |` cres 4880   ` cfv 5454  (class class class)co 6081    ^m cmap 7018   0cc0 8990   1c1 8991   NNcn 10000   NN0cn0 10221   ZZ>=cuz 10488   ...cfz 11043  mzPolycmzp 26779  Diophcdioph 26813
This theorem is referenced by:  rexrabdioph  26854
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-hash 11619  df-mzpcl 26780  df-mzp 26781  df-dioph 26814
  Copyright terms: Public domain W3C validator