Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophrex Unicode version

Theorem diophrex 26361
Description: Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
diophrex  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  { t  |  E. u  e.  S  t  =  ( u  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
Distinct variable groups:    t, N, u    t, S, u
Allowed substitution hints:    M( u, t)

Proof of Theorem diophrex
Dummy variables  a 
b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2372 . . . . 5  |-  ( a  =  t  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  t  =  ( b  |`  (
1 ... N ) ) ) )
21rexbidv 2649 . . . 4  |-  ( a  =  t  ->  ( E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) )  <->  E. b  e.  S  t  =  ( b  |`  (
1 ... N ) ) ) )
3 reseq1 5052 . . . . . 6  |-  ( b  =  u  ->  (
b  |`  ( 1 ... N ) )  =  ( u  |`  (
1 ... N ) ) )
43eqeq2d 2377 . . . . 5  |-  ( b  =  u  ->  (
t  =  ( b  |`  ( 1 ... N
) )  <->  t  =  ( u  |`  ( 1 ... N ) ) ) )
54cbvrexv 2850 . . . 4  |-  ( E. b  e.  S  t  =  ( b  |`  ( 1 ... N
) )  <->  E. u  e.  S  t  =  ( u  |`  ( 1 ... N ) ) )
62, 5syl6bb 252 . . 3  |-  ( a  =  t  ->  ( E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) )  <->  E. u  e.  S  t  =  ( u  |`  ( 1 ... N ) ) ) )
76cbvabv 2485 . 2  |-  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N ) ) }  =  { t  |  E. u  e.  S  t  =  ( u  |`  ( 1 ... N ) ) }
8 eldioph3b 26350 . . . . 5  |-  ( S  e.  (Dioph `  M
)  <->  ( M  e. 
NN0  /\  E. c  e.  (mzPoly `  NN ) S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } ) )
98simprbi 450 . . . 4  |-  ( S  e.  (Dioph `  M
)  ->  E. c  e.  (mzPoly `  NN ) S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } )
1093ad2ant3 979 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  E. c  e.  (mzPoly `  NN ) S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } )
11 rexeq 2822 . . . . . . . 8  |-  ( S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) }  ->  ( E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) )  <->  E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } a  =  ( b  |`  ( 1 ... N
) ) ) )
1211abbidv 2480 . . . . . . 7  |-  ( S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) }  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N ) ) }  =  { a  |  E. b  e. 
{ d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } a  =  ( b  |`  ( 1 ... N
) ) } )
1312adantl 452 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M ) )  /\  c  e.  (mzPoly `  NN ) )  /\  S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } )  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  =  { a  |  E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) } )
14 eqeq1 2372 . . . . . . . . . . . . 13  |-  ( d  =  b  ->  (
d  =  ( e  |`  ( 1 ... M
) )  <->  b  =  ( e  |`  (
1 ... M ) ) ) )
1514anbi1d 685 . . . . . . . . . . . 12  |-  ( d  =  b  ->  (
( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  <->  ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) ) )
1615rexbidv 2649 . . . . . . . . . . 11  |-  ( d  =  b  ->  ( E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  <->  E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) ) )
1716rexab 3014 . . . . . . . . . 10  |-  ( E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) )  <->  E. b ( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
18 r19.41v 2778 . . . . . . . . . . . 12  |-  ( E. e  e.  ( NN0 
^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
1918exbii 1587 . . . . . . . . . . 11  |-  ( E. b E. e  e.  ( NN0  ^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. b
( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
20 rexcom4 2892 . . . . . . . . . . . 12  |-  ( E. e  e.  ( NN0 
^m  NN ) E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. b E. e  e.  ( NN0  ^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
21 anass 630 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( b  =  ( e  |`  (
1 ... M ) )  /\  ( ( c `
 e )  =  0  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
2221exbii 1587 . . . . . . . . . . . . . . 15  |-  ( E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. b
( b  =  ( e  |`  ( 1 ... M ) )  /\  ( ( c `
 e )  =  0  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
23 vex 2876 . . . . . . . . . . . . . . . . 17  |-  e  e. 
_V
2423resex 5098 . . . . . . . . . . . . . . . 16  |-  ( e  |`  ( 1 ... M
) )  e.  _V
25 reseq1 5052 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  ( e  |`  ( 1 ... M
) )  ->  (
b  |`  ( 1 ... N ) )  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) )
2625eqeq2d 2377 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( e  |`  ( 1 ... M
) )  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) )
2726anbi2d 684 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( e  |`  ( 1 ... M
) )  ->  (
( ( c `  e )  =  0  /\  a  =  ( b  |`  ( 1 ... N ) ) )  <->  ( ( c `
 e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) ) )
2824, 27ceqsexv 2908 . . . . . . . . . . . . . . 15  |-  ( E. b ( b  =  ( e  |`  (
1 ... M ) )  /\  ( ( c `
 e )  =  0  /\  a  =  ( b  |`  (
1 ... N ) ) ) )  <->  ( (
c `  e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) )
2922, 28bitri 240 . . . . . . . . . . . . . 14  |-  ( E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  ( (
c `  e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) )
30 ancom 437 . . . . . . . . . . . . . . 15  |-  ( ( ( c `  e
)  =  0  /\  a  =  ( ( e  |`  ( 1 ... M ) )  |`  ( 1 ... N
) ) )  <->  ( a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) )
31 simpl2 960 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  M  e.  (
ZZ>= `  N ) )
32 fzss2 10984 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... M
) )
33 resabs1 5087 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1 ... N ) 
C_  ( 1 ... M )  ->  (
( e  |`  (
1 ... M ) )  |`  ( 1 ... N
) )  =  ( e  |`  ( 1 ... N ) ) )
3431, 32, 333syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  =  ( e  |`  ( 1 ... N
) ) )
3534eqeq2d 2377 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  <-> 
a  =  ( e  |`  ( 1 ... N
) ) ) )
3635anbi1d 685 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( ( a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 )  <->  ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
3730, 36syl5bb 248 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( ( ( c `  e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) )  <->  ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
3829, 37syl5bb 248 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b
( ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
3938rexbidv 2649 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. e  e.  ( NN0  ^m  NN ) E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4020, 39syl5bbr 250 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b E. e  e.  ( NN0  ^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  ( 1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4119, 40syl5bbr 250 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b
( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  ( 1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4217, 41syl5bb 248 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } a  =  ( b  |`  ( 1 ... N
) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4342abbidv 2480 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. b  e.  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) }  =  { a  |  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) } )
44 eldioph3 26351 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) }  e.  (Dioph `  N ) )
45443ad2antl1 1118 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  ( 1 ... N ) )  /\  ( c `  e )  =  0 ) }  e.  (Dioph `  N ) )
4643, 45eqeltrd 2440 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. b  e.  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) }  e.  (Dioph `  N ) )
4746adantr 451 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M ) )  /\  c  e.  (mzPoly `  NN ) )  /\  S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } )  ->  { a  |  E. b  e.  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) }  e.  (Dioph `  N ) )
4813, 47eqeltrd 2440 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M ) )  /\  c  e.  (mzPoly `  NN ) )  /\  S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } )  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
4948ex 423 . . . 4  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) }  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) ) )
5049rexlimdva 2752 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  ( E. c  e.  (mzPoly `  NN ) S  =  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) }  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N ) ) }  e.  (Dioph `  N ) ) )
5110, 50mpd 14 . 2  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
527, 51syl5eqelr 2451 1  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  { t  |  E. u  e.  S  t  =  ( u  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935   E.wex 1546    = wceq 1647    e. wcel 1715   {cab 2352   E.wrex 2629    C_ wss 3238    |` cres 4794   ` cfv 5358  (class class class)co 5981    ^m cmap 6915   0cc0 8884   1c1 8885   NNcn 9893   NN0cn0 10114   ZZ>=cuz 10381   ...cfz 10935  mzPolycmzp 26306  Diophcdioph 26340
This theorem is referenced by:  rexrabdioph  26381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-map 6917  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-card 7719  df-cda 7941  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-n0 10115  df-z 10176  df-uz 10382  df-fz 10936  df-hash 11506  df-mzpcl 26307  df-mzp 26308  df-dioph 26341
  Copyright terms: Public domain W3C validator