Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophrex Unicode version

Theorem diophrex 26223
Description: Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
diophrex  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  { t  |  E. u  e.  S  t  =  ( u  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
Distinct variable groups:    t, N, u    t, S, u
Allowed substitution hints:    M( u, t)

Proof of Theorem diophrex
StepHypRef Expression
1 eqeq1 2264 . . . . 5  |-  ( a  =  t  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  t  =  ( b  |`  (
1 ... N ) ) ) )
21rexbidv 2539 . . . 4  |-  ( a  =  t  ->  ( E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) )  <->  E. b  e.  S  t  =  ( b  |`  (
1 ... N ) ) ) )
3 reseq1 4937 . . . . . 6  |-  ( b  =  u  ->  (
b  |`  ( 1 ... N ) )  =  ( u  |`  (
1 ... N ) ) )
43eqeq2d 2269 . . . . 5  |-  ( b  =  u  ->  (
t  =  ( b  |`  ( 1 ... N
) )  <->  t  =  ( u  |`  ( 1 ... N ) ) ) )
54cbvrexv 2740 . . . 4  |-  ( E. b  e.  S  t  =  ( b  |`  ( 1 ... N
) )  <->  E. u  e.  S  t  =  ( u  |`  ( 1 ... N ) ) )
62, 5syl6bb 254 . . 3  |-  ( a  =  t  ->  ( E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) )  <->  E. u  e.  S  t  =  ( u  |`  ( 1 ... N ) ) ) )
76cbvabv 2377 . 2  |-  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N ) ) }  =  { t  |  E. u  e.  S  t  =  ( u  |`  ( 1 ... N ) ) }
8 eldioph3b 26212 . . . . 5  |-  ( S  e.  (Dioph `  M
)  <->  ( M  e. 
NN0  /\  E. c  e.  (mzPoly `  NN ) S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } ) )
98simprbi 452 . . . 4  |-  ( S  e.  (Dioph `  M
)  ->  E. c  e.  (mzPoly `  NN ) S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } )
1093ad2ant3 983 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  E. c  e.  (mzPoly `  NN ) S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } )
11 rexeq 2712 . . . . . . . 8  |-  ( S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) }  ->  ( E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) )  <->  E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } a  =  ( b  |`  ( 1 ... N
) ) ) )
1211abbidv 2372 . . . . . . 7  |-  ( S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) }  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N ) ) }  =  { a  |  E. b  e. 
{ d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } a  =  ( b  |`  ( 1 ... N
) ) } )
1312adantl 454 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M ) )  /\  c  e.  (mzPoly `  NN ) )  /\  S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } )  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  =  { a  |  E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) } )
14 eqeq1 2264 . . . . . . . . . . . . 13  |-  ( d  =  b  ->  (
d  =  ( e  |`  ( 1 ... M
) )  <->  b  =  ( e  |`  (
1 ... M ) ) ) )
1514anbi1d 688 . . . . . . . . . . . 12  |-  ( d  =  b  ->  (
( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  <->  ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) ) )
1615rexbidv 2539 . . . . . . . . . . 11  |-  ( d  =  b  ->  ( E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  <->  E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) ) )
1716rexab 2903 . . . . . . . . . 10  |-  ( E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) )  <->  E. b ( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
18 r19.41v 2668 . . . . . . . . . . . 12  |-  ( E. e  e.  ( NN0 
^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
1918exbii 1580 . . . . . . . . . . 11  |-  ( E. b E. e  e.  ( NN0  ^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. b
( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
20 rexcom4 2782 . . . . . . . . . . . 12  |-  ( E. e  e.  ( NN0 
^m  NN ) E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. b E. e  e.  ( NN0  ^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
21 anass 633 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( b  =  ( e  |`  (
1 ... M ) )  /\  ( ( c `
 e )  =  0  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
2221exbii 1580 . . . . . . . . . . . . . . 15  |-  ( E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. b
( b  =  ( e  |`  ( 1 ... M ) )  /\  ( ( c `
 e )  =  0  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
23 vex 2766 . . . . . . . . . . . . . . . . 17  |-  e  e. 
_V
2423resex 4983 . . . . . . . . . . . . . . . 16  |-  ( e  |`  ( 1 ... M
) )  e.  _V
25 reseq1 4937 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  ( e  |`  ( 1 ... M
) )  ->  (
b  |`  ( 1 ... N ) )  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) )
2625eqeq2d 2269 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( e  |`  ( 1 ... M
) )  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) )
2726anbi2d 687 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( e  |`  ( 1 ... M
) )  ->  (
( ( c `  e )  =  0  /\  a  =  ( b  |`  ( 1 ... N ) ) )  <->  ( ( c `
 e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) ) )
2824, 27ceqsexv 2798 . . . . . . . . . . . . . . 15  |-  ( E. b ( b  =  ( e  |`  (
1 ... M ) )  /\  ( ( c `
 e )  =  0  /\  a  =  ( b  |`  (
1 ... N ) ) ) )  <->  ( (
c `  e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) )
2922, 28bitri 242 . . . . . . . . . . . . . 14  |-  ( E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  ( (
c `  e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) )
30 ancom 439 . . . . . . . . . . . . . . 15  |-  ( ( ( c `  e
)  =  0  /\  a  =  ( ( e  |`  ( 1 ... M ) )  |`  ( 1 ... N
) ) )  <->  ( a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) )
31 simpl2 964 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  M  e.  (
ZZ>= `  N ) )
32 fzss2 10798 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... M
) )
33 resabs1 4972 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1 ... N ) 
C_  ( 1 ... M )  ->  (
( e  |`  (
1 ... M ) )  |`  ( 1 ... N
) )  =  ( e  |`  ( 1 ... N ) ) )
3431, 32, 333syl 20 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  =  ( e  |`  ( 1 ... N
) ) )
3534eqeq2d 2269 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  <-> 
a  =  ( e  |`  ( 1 ... N
) ) ) )
3635anbi1d 688 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( ( a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 )  <->  ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
3730, 36syl5bb 250 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( ( ( c `  e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) )  <->  ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
3829, 37syl5bb 250 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b
( ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
3938rexbidv 2539 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. e  e.  ( NN0  ^m  NN ) E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4020, 39syl5bbr 252 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b E. e  e.  ( NN0  ^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  ( 1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4119, 40syl5bbr 252 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b
( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  ( 1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4217, 41syl5bb 250 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } a  =  ( b  |`  ( 1 ... N
) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4342abbidv 2372 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. b  e.  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) }  =  { a  |  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) } )
44 eldioph3 26213 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) }  e.  (Dioph `  N ) )
45443ad2antl1 1122 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  ( 1 ... N ) )  /\  ( c `  e )  =  0 ) }  e.  (Dioph `  N ) )
4643, 45eqeltrd 2332 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. b  e.  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) }  e.  (Dioph `  N ) )
4746adantr 453 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M ) )  /\  c  e.  (mzPoly `  NN ) )  /\  S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } )  ->  { a  |  E. b  e.  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) }  e.  (Dioph `  N ) )
4813, 47eqeltrd 2332 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M ) )  /\  c  e.  (mzPoly `  NN ) )  /\  S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } )  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
4948ex 425 . . . 4  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) }  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) ) )
5049rexlimdva 2642 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  ( E. c  e.  (mzPoly `  NN ) S  =  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) }  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N ) ) }  e.  (Dioph `  N ) ) )
5110, 50mpd 16 . 2  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
527, 51syl5eqelr 2343 1  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  { t  |  E. u  e.  S  t  =  ( u  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939   E.wex 1537    = wceq 1619    e. wcel 1621   {cab 2244   E.wrex 2519    C_ wss 3127    |` cres 4663   ` cfv 4673  (class class class)co 5792    ^m cmap 6740   0cc0 8705   1c1 8706   NNcn 9714   NN0cn0 9933   ZZ>=cuz 10198   ...cfz 10749  mzPolycmzp 26168  Diophcdioph 26202
This theorem is referenced by:  rexrabdioph  26243
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-n 9715  df-n0 9934  df-z 9993  df-uz 10199  df-fz 10750  df-hash 11305  df-mzpcl 26169  df-mzp 26170  df-dioph 26203
  Copyright terms: Public domain W3C validator