MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcj Unicode version

Theorem dipcj 21215
Description: The complex conjugate of an inner product reverses its arguments. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1  |-  X  =  ( BaseSet `  U )
ipcl.7  |-  P  =  ( .i OLD `  U
)
Assertion
Ref Expression
dipcj  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( A P B ) )  =  ( B P A ) )

Proof of Theorem dipcj
StepHypRef Expression
1 ipcl.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 eqid 2256 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
3 eqid 2256 . . . 4  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
4 eqid 2256 . . . 4  |-  ( normCV `  U )  =  (
normCV
`  U )
5 ipcl.7 . . . 4  |-  P  =  ( .i OLD `  U
)
61, 2, 3, 4, 5ipval2 21205 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A P B )  =  ( ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )
76fveq2d 5427 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( A P B ) )  =  ( * `  (
( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) ) )
81, 2, 3, 4, 5ipval2 21205 . . . 4  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  ( B P A )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
983com23 1162 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( B P A )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
101, 2, 3, 4, 5ipval2lem3 21203 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  e.  RR )
1110recnd 8794 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  e.  CC )
12 neg1cn 9746 . . . . . . . 8  |-  -u 1  e.  CC
131, 2, 3, 4, 5ipval2lem4 21204 . . . . . . . 8  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  -u 1  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 )  e.  CC )
1412, 13mpan2 655 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u 1
( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
1511, 14subcld 9090 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  CC )
16 ax-icn 8729 . . . . . . 7  |-  _i  e.  CC
171, 2, 3, 4, 5ipval2lem4 21204 . . . . . . . . 9  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  _i  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
1816, 17mpan2 655 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
1916negcli 9047 . . . . . . . . 9  |-  -u _i  e.  CC
201, 2, 3, 4, 5ipval2lem4 21204 . . . . . . . . 9  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  -u _i  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
2119, 20mpan2 655 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
2218, 21subcld 9090 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  CC )
23 mulcl 8754 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  CC )  ->  ( _i  x.  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) )  e.  CC )
2416, 22, 23sylancr 647 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) )  e.  CC )
2515, 24addcld 8787 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  e.  CC )
26 4cn 9753 . . . . . 6  |-  4  e.  CC
27 4re 9752 . . . . . . 7  |-  4  e.  RR
28 4pos 9765 . . . . . . 7  |-  0  <  4
2927, 28gt0ne0ii 9242 . . . . . 6  |-  4  =/=  0
30 cjdiv 11579 . . . . . 6  |-  ( ( ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  e.  CC  /\  4  e.  CC  /\  4  =/=  0 )  ->  (
* `  ( (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) ) )
3126, 29, 30mp3an23 1274 . . . . 5  |-  ( ( ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  e.  CC  ->  ( * `  ( ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) ) )
3225, 31syl 17 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) ) )
33 cjre 11554 . . . . . . 7  |-  ( 4  e.  RR  ->  (
* `  4 )  =  4 )
3427, 33ax-mp 10 . . . . . 6  |-  ( * `
 4 )  =  4
3534oveq2i 5768 . . . . 5  |-  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) )  =  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  4 )
361, 2, 3, 4, 5ipval2lem2 21202 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  -u 1  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 )  e.  RR )
3712, 36mpan2 655 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u 1
( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
3810, 37resubcld 9144 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  RR )
391, 2, 3, 4, 5ipval2lem2 21202 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  _i  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
4016, 39mpan2 655 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
411, 2, 3, 4, 5ipval2lem2 21202 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  -u _i  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
4219, 41mpan2 655 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
4340, 42resubcld 9144 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  RR )
44 cjreim 11575 . . . . . . . 8  |-  ( ( ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  RR  /\  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  RR )  ->  ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  =  ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
4538, 43, 44syl2anc 645 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  =  ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
46 submul2 9153 . . . . . . . . 9  |-  ( ( ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  CC  /\  _i  e.  CC  /\  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  CC )  ->  ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  =  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
4716, 46mp3an2 1270 . . . . . . . 8  |-  ( ( ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  CC  /\  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  CC )  ->  ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  =  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
4815, 22, 47syl2anc 645 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  =  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
491, 2nvcom 21102 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A ( +v `  U ) B )  =  ( B ( +v `  U ) A ) )
5049fveq2d 5427 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( A ( +v `  U ) B ) )  =  ( (
normCV
`  U ) `  ( B ( +v `  U ) A ) ) )
5150oveq1d 5772 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  =  ( ( ( normCV `  U ) `  ( B ( +v `  U ) A ) ) ^ 2 ) )
521, 2, 3, 4nvdif 21156 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) )  =  ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) )
5352oveq1d 5772 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u 1
( .s OLD `  U
) B ) ) ) ^ 2 )  =  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )
5451, 53oveq12d 5775 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  =  ( ( ( ( normCV `  U ) `  ( B ( +v `  U ) A ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) ) )
5518, 21negsubdi2d 9106 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  =  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) )
561, 2, 3, 4nvpi 21157 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  (
( normCV `  U ) `  ( B ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) )  =  ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) )
57563com23 1162 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( B ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) )  =  ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) )
5857eqcomd 2261 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) )  =  ( (
normCV
`  U ) `  ( B ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) )
5958oveq1d 5772 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  =  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 ) )
601, 2, 3, 4nvpi 21157 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) )  =  ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) )
6160oveq1d 5772 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  =  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) )
6259, 61oveq12d 5775 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  =  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) )
6355, 62eqtrd 2288 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  =  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) )
6463oveq2d 5773 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
_i  x.  -u ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) )  =  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )
6554, 64oveq12d 5775 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  =  ( ( ( ( ( normCV `  U ) `  ( B ( +v `  U ) A ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) ) )
6645, 48, 653eqtrd 2292 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  =  ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) ) )
6766oveq1d 5772 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( * `  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  4 )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
6835, 67syl5eq 2300 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( * `  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
6932, 68eqtrd 2288 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
709, 69eqtr4d 2291 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( B P A )  =  ( * `  (
( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) ) )
717, 70eqtr4d 2291 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( A P B ) )  =  ( B P A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   ` cfv 4638  (class class class)co 5757   CCcc 8668   RRcr 8669   0cc0 8670   1c1 8671   _ici 8672    + caddc 8673    x. cmul 8675    - cmin 8970   -ucneg 8971    / cdiv 9356   2c2 9728   4c4 9730   ^cexp 11035   *ccj 11511   NrmCVeccnv 21065   +vcpv 21066   BaseSetcba 21067   .s
OLDcns 21068   normCVcnmcv 21071   .i OLDcdip 21198
This theorem is referenced by:  ipipcj  21216  diporthcom  21217  dip0l  21219  ipasslem10  21342  dipdi  21346  dipassr  21349  dipsubdi  21352  siii  21356  hlipcj  21415
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-sup 7127  df-oi 7158  df-card 7505  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-n0 9898  df-z 9957  df-uz 10163  df-rp 10287  df-fz 10714  df-fzo 10802  df-seq 10978  df-exp 11036  df-hash 11269  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-clim 11892  df-sum 12089  df-grpo 20783  df-gid 20784  df-ginv 20785  df-ablo 20874  df-vc 21027  df-nv 21073  df-va 21076  df-ba 21077  df-sm 21078  df-0v 21079  df-nmcv 21081  df-dip 21199
  Copyright terms: Public domain W3C validator