MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcj Unicode version

Theorem dipcj 21292
Description: The complex conjugate of an inner product reverses its arguments. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1  |-  X  =  ( BaseSet `  U )
ipcl.7  |-  P  =  ( .i OLD `  U
)
Assertion
Ref Expression
dipcj  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( A P B ) )  =  ( B P A ) )

Proof of Theorem dipcj
StepHypRef Expression
1 ipcl.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 eqid 2285 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
3 eqid 2285 . . . 4  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
4 eqid 2285 . . . 4  |-  ( normCV `  U )  =  (
normCV
`  U )
5 ipcl.7 . . . 4  |-  P  =  ( .i OLD `  U
)
61, 2, 3, 4, 5ipval2 21282 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A P B )  =  ( ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )
76fveq2d 5531 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( A P B ) )  =  ( * `  (
( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) ) )
81, 2, 3, 4, 5ipval2 21282 . . . 4  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  ( B P A )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
983com23 1157 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( B P A )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
101, 2, 3, 4, 5ipval2lem3 21280 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  e.  RR )
1110recnd 8863 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  e.  CC )
12 neg1cn 9815 . . . . . . . 8  |-  -u 1  e.  CC
131, 2, 3, 4, 5ipval2lem4 21281 . . . . . . . 8  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  -u 1  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 )  e.  CC )
1412, 13mpan2 652 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u 1
( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
1511, 14subcld 9159 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  CC )
16 ax-icn 8798 . . . . . . 7  |-  _i  e.  CC
171, 2, 3, 4, 5ipval2lem4 21281 . . . . . . . . 9  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  _i  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
1816, 17mpan2 652 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
1916negcli 9116 . . . . . . . . 9  |-  -u _i  e.  CC
201, 2, 3, 4, 5ipval2lem4 21281 . . . . . . . . 9  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  -u _i  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
2119, 20mpan2 652 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
2218, 21subcld 9159 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  CC )
23 mulcl 8823 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  CC )  ->  ( _i  x.  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) )  e.  CC )
2416, 22, 23sylancr 644 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) )  e.  CC )
2515, 24addcld 8856 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  e.  CC )
26 4cn 9822 . . . . . 6  |-  4  e.  CC
27 4re 9821 . . . . . . 7  |-  4  e.  RR
28 4pos 9834 . . . . . . 7  |-  0  <  4
2927, 28gt0ne0ii 9311 . . . . . 6  |-  4  =/=  0
30 cjdiv 11651 . . . . . 6  |-  ( ( ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  e.  CC  /\  4  e.  CC  /\  4  =/=  0 )  ->  (
* `  ( (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) ) )
3126, 29, 30mp3an23 1269 . . . . 5  |-  ( ( ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  e.  CC  ->  ( * `  ( ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) ) )
3225, 31syl 15 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) ) )
33 cjre 11626 . . . . . . 7  |-  ( 4  e.  RR  ->  (
* `  4 )  =  4 )
3427, 33ax-mp 8 . . . . . 6  |-  ( * `
 4 )  =  4
3534oveq2i 5871 . . . . 5  |-  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) )  =  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  4 )
361, 2, 3, 4, 5ipval2lem2 21279 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  -u 1  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 )  e.  RR )
3712, 36mpan2 652 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u 1
( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
3810, 37resubcld 9213 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  RR )
391, 2, 3, 4, 5ipval2lem2 21279 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  _i  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
4016, 39mpan2 652 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
411, 2, 3, 4, 5ipval2lem2 21279 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  -u _i  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
4219, 41mpan2 652 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
4340, 42resubcld 9213 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  RR )
44 cjreim 11647 . . . . . . . 8  |-  ( ( ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  RR  /\  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  RR )  ->  ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  =  ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
4538, 43, 44syl2anc 642 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  =  ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
46 submul2 9222 . . . . . . . . 9  |-  ( ( ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  CC  /\  _i  e.  CC  /\  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  CC )  ->  ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  =  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
4716, 46mp3an2 1265 . . . . . . . 8  |-  ( ( ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  CC  /\  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  CC )  ->  ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  =  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
4815, 22, 47syl2anc 642 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  =  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
491, 2nvcom 21179 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A ( +v `  U ) B )  =  ( B ( +v `  U ) A ) )
5049fveq2d 5531 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( A ( +v `  U ) B ) )  =  ( (
normCV
`  U ) `  ( B ( +v `  U ) A ) ) )
5150oveq1d 5875 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  =  ( ( ( normCV `  U ) `  ( B ( +v `  U ) A ) ) ^ 2 ) )
521, 2, 3, 4nvdif 21233 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) )  =  ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) )
5352oveq1d 5875 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u 1
( .s OLD `  U
) B ) ) ) ^ 2 )  =  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )
5451, 53oveq12d 5878 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  =  ( ( ( ( normCV `  U ) `  ( B ( +v `  U ) A ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) ) )
5518, 21negsubdi2d 9175 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  =  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) )
561, 2, 3, 4nvpi 21234 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  (
( normCV `  U ) `  ( B ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) )  =  ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) )
57563com23 1157 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( B ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) )  =  ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) )
5857eqcomd 2290 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) )  =  ( (
normCV
`  U ) `  ( B ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) )
5958oveq1d 5875 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  =  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 ) )
601, 2, 3, 4nvpi 21234 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) )  =  ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) )
6160oveq1d 5875 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  =  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) )
6259, 61oveq12d 5878 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  =  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) )
6355, 62eqtrd 2317 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  =  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) )
6463oveq2d 5876 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
_i  x.  -u ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) )  =  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )
6554, 64oveq12d 5878 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  =  ( ( ( ( ( normCV `  U ) `  ( B ( +v `  U ) A ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) ) )
6645, 48, 653eqtrd 2321 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  =  ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) ) )
6766oveq1d 5875 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( * `  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  4 )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
6835, 67syl5eq 2329 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( * `  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
6932, 68eqtrd 2317 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
709, 69eqtr4d 2320 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( B P A )  =  ( * `  (
( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) ) )
717, 70eqtr4d 2320 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( A P B ) )  =  ( B P A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   ` cfv 5257  (class class class)co 5860   CCcc 8737   RRcr 8738   0cc0 8739   1c1 8740   _ici 8741    + caddc 8742    x. cmul 8744    - cmin 9039   -ucneg 9040    / cdiv 9425   2c2 9797   4c4 9799   ^cexp 11106   *ccj 11583   NrmCVeccnv 21142   +vcpv 21143   BaseSetcba 21144   .s
OLDcns 21145   normCVcnmcv 21148   .i OLDcdip 21275
This theorem is referenced by:  ipipcj  21293  diporthcom  21294  dip0l  21296  ipasslem10  21419  dipdi  21423  dipassr  21426  dipsubdi  21429  siii  21433  hlipcj  21492
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-card 7574  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-fz 10785  df-fzo 10873  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-sum 12161  df-grpo 20860  df-gid 20861  df-ginv 20862  df-ablo 20951  df-vc 21104  df-nv 21150  df-va 21153  df-ba 21154  df-sm 21155  df-0v 21156  df-nmcv 21158  df-dip 21276
  Copyright terms: Public domain W3C validator