MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirref Structured version   Unicode version

Theorem dirref 14685
Description: A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
dirref.1  |-  X  =  dom  R
Assertion
Ref Expression
dirref  |-  ( ( R  e.  DirRel  /\  A  e.  X )  ->  A R A )

Proof of Theorem dirref
StepHypRef Expression
1 eqid 2438 . . . 4  |-  A  =  A
2 resieq 5159 . . . . 5  |-  ( ( A  e.  X  /\  A  e.  X )  ->  ( A (  _I  |`  X ) A  <->  A  =  A ) )
32anidms 628 . . . 4  |-  ( A  e.  X  ->  ( A (  _I  |`  X ) A  <->  A  =  A
) )
41, 3mpbiri 226 . . 3  |-  ( A  e.  X  ->  A
(  _I  |`  X ) A )
5 dirref.1 . . . . . . 7  |-  X  =  dom  R
6 dirdm 14684 . . . . . . 7  |-  ( R  e.  DirRel  ->  dom  R  =  U. U. R )
75, 6syl5eq 2482 . . . . . 6  |-  ( R  e.  DirRel  ->  X  =  U. U. R )
87reseq2d 5149 . . . . 5  |-  ( R  e.  DirRel  ->  (  _I  |`  X )  =  (  _I  |`  U. U. R ) )
9 eqid 2438 . . . . . . . . 9  |-  U. U. R  =  U. U. R
109isdir 14682 . . . . . . . 8  |-  ( R  e.  DirRel  ->  ( R  e. 
DirRel 
<->  ( ( Rel  R  /\  (  _I  |`  U. U. R )  C_  R
)  /\  ( ( R  o.  R )  C_  R  /\  ( U. U. R  X.  U. U. R )  C_  ( `' R  o.  R
) ) ) ) )
1110ibi 234 . . . . . . 7  |-  ( R  e.  DirRel  ->  ( ( Rel 
R  /\  (  _I  |` 
U. U. R )  C_  R )  /\  (
( R  o.  R
)  C_  R  /\  ( U. U. R  X.  U.
U. R )  C_  ( `' R  o.  R
) ) ) )
1211simpld 447 . . . . . 6  |-  ( R  e.  DirRel  ->  ( Rel  R  /\  (  _I  |`  U. U. R )  C_  R
) )
1312simprd 451 . . . . 5  |-  ( R  e.  DirRel  ->  (  _I  |`  U. U. R )  C_  R
)
148, 13eqsstrd 3384 . . . 4  |-  ( R  e.  DirRel  ->  (  _I  |`  X ) 
C_  R )
1514ssbrd 4256 . . 3  |-  ( R  e.  DirRel  ->  ( A (  _I  |`  X ) A  ->  A R A ) )
164, 15syl5 31 . 2  |-  ( R  e.  DirRel  ->  ( A  e.  X  ->  A R A ) )
1716imp 420 1  |-  ( ( R  e.  DirRel  /\  A  e.  X )  ->  A R A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    C_ wss 3322   U.cuni 4017   class class class wbr 4215    _I cid 4496    X. cxp 4879   `'ccnv 4880   dom cdm 4881    |` cres 4883    o. ccom 4885   Rel wrel 4886   DirRelcdir 14678
This theorem is referenced by:  tailini  26419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-dir 14680
  Copyright terms: Public domain W3C validator