MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrsr Structured version   Unicode version

Theorem distrsr 8956
Description: Multiplication of signed reals is distributive. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
distrsr  |-  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) )

Proof of Theorem distrsr
Dummy variables  f 
g  h  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 8925 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 addsrpr 8940 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  +R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )
3 mulsrpr 8941 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( z  +P.  v )  e.  P.  /\  ( w  +P.  u
)  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. ( z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )  =  [ <. (
( x  .P.  (
z  +P.  v )
)  +P.  ( y  .P.  ( w  +P.  u
) ) ) ,  ( ( x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  ( z  +P.  v ) ) )
>. ]  ~R  )
4 mulsrpr 8941 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
5 mulsrpr 8941 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
( x  .P.  v
)  +P.  ( y  .P.  u ) ) ,  ( ( x  .P.  u )  +P.  (
y  .P.  v )
) >. ]  ~R  )
6 addsrpr 8940 . . 3  |-  ( ( ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P.  /\  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )  /\  ( ( ( x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P.  /\  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
)  ->  ( [ <. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >. ]  ~R  +R  [ <. ( ( x  .P.  v
)  +P.  ( y  .P.  u ) ) ,  ( ( x  .P.  u )  +P.  (
y  .P.  v )
) >. ]  ~R  )  =  [ <. ( ( ( x  .P.  z )  +P.  ( y  .P.  w ) )  +P.  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) ) ,  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( (
x  .P.  u )  +P.  ( y  .P.  v
) ) ) >. ]  ~R  )
7 addclpr 8885 . . . . 5  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  +P.  v
)  e.  P. )
8 addclpr 8885 . . . . 5  |-  ( ( w  e.  P.  /\  u  e.  P. )  ->  ( w  +P.  u
)  e.  P. )
97, 8anim12i 550 . . . 4  |-  ( ( ( z  e.  P.  /\  v  e.  P. )  /\  ( w  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  v )  e.  P.  /\  ( w  +P.  u )  e. 
P. ) )
109an4s 800 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  v )  e.  P.  /\  ( w  +P.  u )  e. 
P. ) )
11 mulclpr 8887 . . . . . 6  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
12 mulclpr 8887 . . . . . 6  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
13 addclpr 8885 . . . . . 6  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
1411, 12, 13syl2an 464 . . . . 5  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
1514an4s 800 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
16 mulclpr 8887 . . . . . 6  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  .P.  w
)  e.  P. )
17 mulclpr 8887 . . . . . 6  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  .P.  z
)  e.  P. )
18 addclpr 8885 . . . . . 6  |-  ( ( ( x  .P.  w
)  e.  P.  /\  ( y  .P.  z
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )
1916, 17, 18syl2an 464 . . . . 5  |-  ( ( ( x  e.  P.  /\  w  e.  P. )  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
2019an42s 801 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
2115, 20jca 519 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  /\  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. ) )
22 mulclpr 8887 . . . . . 6  |-  ( ( x  e.  P.  /\  v  e.  P. )  ->  ( x  .P.  v
)  e.  P. )
23 mulclpr 8887 . . . . . 6  |-  ( ( y  e.  P.  /\  u  e.  P. )  ->  ( y  .P.  u
)  e.  P. )
24 addclpr 8885 . . . . . 6  |-  ( ( ( x  .P.  v
)  e.  P.  /\  ( y  .P.  u
)  e.  P. )  ->  ( ( x  .P.  v )  +P.  (
y  .P.  u )
)  e.  P. )
2522, 23, 24syl2an 464 . . . . 5  |-  ( ( ( x  e.  P.  /\  v  e.  P. )  /\  ( y  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P. )
2625an4s 800 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P. )
27 mulclpr 8887 . . . . . 6  |-  ( ( x  e.  P.  /\  u  e.  P. )  ->  ( x  .P.  u
)  e.  P. )
28 mulclpr 8887 . . . . . 6  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  .P.  v
)  e.  P. )
29 addclpr 8885 . . . . . 6  |-  ( ( ( x  .P.  u
)  e.  P.  /\  ( y  .P.  v
)  e.  P. )  ->  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
3027, 28, 29syl2an 464 . . . . 5  |-  ( ( ( x  e.  P.  /\  u  e.  P. )  /\  ( y  e.  P.  /\  v  e.  P. )
)  ->  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. )
3130an42s 801 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. )
3226, 31jca 519 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( x  .P.  v
)  +P.  ( y  .P.  u ) )  e. 
P.  /\  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. ) )
33 distrpr 8895 . . . . 5  |-  ( x  .P.  ( z  +P.  v ) )  =  ( ( x  .P.  z )  +P.  (
x  .P.  v )
)
34 distrpr 8895 . . . . 5  |-  ( y  .P.  ( w  +P.  u ) )  =  ( ( y  .P.  w )  +P.  (
y  .P.  u )
)
3533, 34oveq12i 6085 . . . 4  |-  ( ( x  .P.  ( z  +P.  v ) )  +P.  ( y  .P.  ( w  +P.  u
) ) )  =  ( ( ( x  .P.  z )  +P.  ( x  .P.  v
) )  +P.  (
( y  .P.  w
)  +P.  ( y  .P.  u ) ) )
36 ovex 6098 . . . . 5  |-  ( x  .P.  z )  e. 
_V
37 ovex 6098 . . . . 5  |-  ( x  .P.  v )  e. 
_V
38 ovex 6098 . . . . 5  |-  ( y  .P.  w )  e. 
_V
39 addcompr 8888 . . . . 5  |-  ( f  +P.  g )  =  ( g  +P.  f
)
40 addasspr 8889 . . . . 5  |-  ( ( f  +P.  g )  +P.  h )  =  ( f  +P.  (
g  +P.  h )
)
41 ovex 6098 . . . . 5  |-  ( y  .P.  u )  e. 
_V
4236, 37, 38, 39, 40, 41caov4 6270 . . . 4  |-  ( ( ( x  .P.  z
)  +P.  ( x  .P.  v ) )  +P.  ( ( y  .P.  w )  +P.  (
y  .P.  u )
) )  =  ( ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  +P.  ( (
x  .P.  v )  +P.  ( y  .P.  u
) ) )
4335, 42eqtri 2455 . . 3  |-  ( ( x  .P.  ( z  +P.  v ) )  +P.  ( y  .P.  ( w  +P.  u
) ) )  =  ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  +P.  (
( x  .P.  v
)  +P.  ( y  .P.  u ) ) )
44 distrpr 8895 . . . . 5  |-  ( x  .P.  ( w  +P.  u ) )  =  ( ( x  .P.  w )  +P.  (
x  .P.  u )
)
45 distrpr 8895 . . . . 5  |-  ( y  .P.  ( z  +P.  v ) )  =  ( ( y  .P.  z )  +P.  (
y  .P.  v )
)
4644, 45oveq12i 6085 . . . 4  |-  ( ( x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  ( z  +P.  v
) ) )  =  ( ( ( x  .P.  w )  +P.  ( x  .P.  u
) )  +P.  (
( y  .P.  z
)  +P.  ( y  .P.  v ) ) )
47 ovex 6098 . . . . 5  |-  ( x  .P.  w )  e. 
_V
48 ovex 6098 . . . . 5  |-  ( x  .P.  u )  e. 
_V
49 ovex 6098 . . . . 5  |-  ( y  .P.  z )  e. 
_V
50 ovex 6098 . . . . 5  |-  ( y  .P.  v )  e. 
_V
5147, 48, 49, 39, 40, 50caov4 6270 . . . 4  |-  ( ( ( x  .P.  w
)  +P.  ( x  .P.  u ) )  +P.  ( ( y  .P.  z )  +P.  (
y  .P.  v )
) )  =  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( (
x  .P.  u )  +P.  ( y  .P.  v
) ) )
5246, 51eqtri 2455 . . 3  |-  ( ( x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  ( z  +P.  v
) ) )  =  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) )
531, 2, 3, 4, 5, 6, 10, 21, 32, 43, 52ecovdi 7009 . 2  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) ) )
54 dmaddsr 8950 . . 3  |-  dom  +R  =  ( R.  X.  R. )
55 0nsr 8944 . . 3  |-  -.  (/)  e.  R.
56 dmmulsr 8951 . . 3  |-  dom  .R  =  ( R.  X.  R. )
5754, 55, 56ndmovdistr 6228 . 2  |-  ( -.  ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C
) ) )
5853, 57pm2.61i 158 1  |-  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725  (class class class)co 6073   P.cnp 8724    +P. cpp 8726    .P. cmp 8727    ~R cer 8731   R.cnr 8732    +R cplr 8736    .R cmr 8737
This theorem is referenced by:  pn0sr  8966  axmulass  9022  axdistr  9023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-omul 6721  df-er 6897  df-ec 6899  df-qs 6903  df-ni 8739  df-pli 8740  df-mi 8741  df-lti 8742  df-plpq 8775  df-mpq 8776  df-ltpq 8777  df-enq 8778  df-nq 8779  df-erq 8780  df-plq 8781  df-mq 8782  df-1nq 8783  df-rq 8784  df-ltnq 8785  df-np 8848  df-plp 8850  df-mp 8851  df-ltp 8852  df-plpr 8922  df-mpr 8923  df-enr 8924  df-nr 8925  df-plr 8926  df-mr 8927
  Copyright terms: Public domain W3C validator