MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrsr Unicode version

Theorem distrsr 8667
Description: Multiplication of signed reals is distributive. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
distrsr  |-  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) )

Proof of Theorem distrsr
StepHypRef Expression
1 df-nr 8636 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 addsrpr 8651 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  +R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )
3 mulsrpr 8652 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( z  +P.  v )  e.  P.  /\  ( w  +P.  u
)  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. ( z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )  =  [ <. (
( x  .P.  (
z  +P.  v )
)  +P.  ( y  .P.  ( w  +P.  u
) ) ) ,  ( ( x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  ( z  +P.  v ) ) )
>. ]  ~R  )
4 mulsrpr 8652 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
5 mulsrpr 8652 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
( x  .P.  v
)  +P.  ( y  .P.  u ) ) ,  ( ( x  .P.  u )  +P.  (
y  .P.  v )
) >. ]  ~R  )
6 addsrpr 8651 . . 3  |-  ( ( ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P.  /\  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )  /\  ( ( ( x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P.  /\  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
)  ->  ( [ <. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >. ]  ~R  +R  [ <. ( ( x  .P.  v
)  +P.  ( y  .P.  u ) ) ,  ( ( x  .P.  u )  +P.  (
y  .P.  v )
) >. ]  ~R  )  =  [ <. ( ( ( x  .P.  z )  +P.  ( y  .P.  w ) )  +P.  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) ) ,  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( (
x  .P.  u )  +P.  ( y  .P.  v
) ) ) >. ]  ~R  )
7 addclpr 8596 . . . . 5  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  +P.  v
)  e.  P. )
8 addclpr 8596 . . . . 5  |-  ( ( w  e.  P.  /\  u  e.  P. )  ->  ( w  +P.  u
)  e.  P. )
97, 8anim12i 551 . . . 4  |-  ( ( ( z  e.  P.  /\  v  e.  P. )  /\  ( w  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  v )  e.  P.  /\  ( w  +P.  u )  e. 
P. ) )
109an4s 802 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  v )  e.  P.  /\  ( w  +P.  u )  e. 
P. ) )
11 mulclpr 8598 . . . . . 6  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
12 mulclpr 8598 . . . . . 6  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
13 addclpr 8596 . . . . . 6  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
1411, 12, 13syl2an 465 . . . . 5  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
1514an4s 802 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
16 mulclpr 8598 . . . . . 6  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  .P.  w
)  e.  P. )
17 mulclpr 8598 . . . . . 6  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  .P.  z
)  e.  P. )
18 addclpr 8596 . . . . . 6  |-  ( ( ( x  .P.  w
)  e.  P.  /\  ( y  .P.  z
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )
1916, 17, 18syl2an 465 . . . . 5  |-  ( ( ( x  e.  P.  /\  w  e.  P. )  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
2019an42s 803 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
2115, 20jca 520 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  /\  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. ) )
22 mulclpr 8598 . . . . . 6  |-  ( ( x  e.  P.  /\  v  e.  P. )  ->  ( x  .P.  v
)  e.  P. )
23 mulclpr 8598 . . . . . 6  |-  ( ( y  e.  P.  /\  u  e.  P. )  ->  ( y  .P.  u
)  e.  P. )
24 addclpr 8596 . . . . . 6  |-  ( ( ( x  .P.  v
)  e.  P.  /\  ( y  .P.  u
)  e.  P. )  ->  ( ( x  .P.  v )  +P.  (
y  .P.  u )
)  e.  P. )
2522, 23, 24syl2an 465 . . . . 5  |-  ( ( ( x  e.  P.  /\  v  e.  P. )  /\  ( y  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P. )
2625an4s 802 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P. )
27 mulclpr 8598 . . . . . 6  |-  ( ( x  e.  P.  /\  u  e.  P. )  ->  ( x  .P.  u
)  e.  P. )
28 mulclpr 8598 . . . . . 6  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  .P.  v
)  e.  P. )
29 addclpr 8596 . . . . . 6  |-  ( ( ( x  .P.  u
)  e.  P.  /\  ( y  .P.  v
)  e.  P. )  ->  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
3027, 28, 29syl2an 465 . . . . 5  |-  ( ( ( x  e.  P.  /\  u  e.  P. )  /\  ( y  e.  P.  /\  v  e.  P. )
)  ->  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. )
3130an42s 803 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. )
3226, 31jca 520 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( x  .P.  v
)  +P.  ( y  .P.  u ) )  e. 
P.  /\  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. ) )
33 distrpr 8606 . . . . 5  |-  ( x  .P.  ( z  +P.  v ) )  =  ( ( x  .P.  z )  +P.  (
x  .P.  v )
)
34 distrpr 8606 . . . . 5  |-  ( y  .P.  ( w  +P.  u ) )  =  ( ( y  .P.  w )  +P.  (
y  .P.  u )
)
3533, 34oveq12i 5790 . . . 4  |-  ( ( x  .P.  ( z  +P.  v ) )  +P.  ( y  .P.  ( w  +P.  u
) ) )  =  ( ( ( x  .P.  z )  +P.  ( x  .P.  v
) )  +P.  (
( y  .P.  w
)  +P.  ( y  .P.  u ) ) )
36 ovex 5803 . . . . 5  |-  ( x  .P.  z )  e. 
_V
37 ovex 5803 . . . . 5  |-  ( x  .P.  v )  e. 
_V
38 ovex 5803 . . . . 5  |-  ( y  .P.  w )  e. 
_V
39 addcompr 8599 . . . . 5  |-  ( f  +P.  g )  =  ( g  +P.  f
)
40 addasspr 8600 . . . . 5  |-  ( ( f  +P.  g )  +P.  h )  =  ( f  +P.  (
g  +P.  h )
)
41 ovex 5803 . . . . 5  |-  ( y  .P.  u )  e. 
_V
4236, 37, 38, 39, 40, 41caov4 5971 . . . 4  |-  ( ( ( x  .P.  z
)  +P.  ( x  .P.  v ) )  +P.  ( ( y  .P.  w )  +P.  (
y  .P.  u )
) )  =  ( ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  +P.  ( (
x  .P.  v )  +P.  ( y  .P.  u
) ) )
4335, 42eqtri 2276 . . 3  |-  ( ( x  .P.  ( z  +P.  v ) )  +P.  ( y  .P.  ( w  +P.  u
) ) )  =  ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  +P.  (
( x  .P.  v
)  +P.  ( y  .P.  u ) ) )
44 distrpr 8606 . . . . 5  |-  ( x  .P.  ( w  +P.  u ) )  =  ( ( x  .P.  w )  +P.  (
x  .P.  u )
)
45 distrpr 8606 . . . . 5  |-  ( y  .P.  ( z  +P.  v ) )  =  ( ( y  .P.  z )  +P.  (
y  .P.  v )
)
4644, 45oveq12i 5790 . . . 4  |-  ( ( x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  ( z  +P.  v
) ) )  =  ( ( ( x  .P.  w )  +P.  ( x  .P.  u
) )  +P.  (
( y  .P.  z
)  +P.  ( y  .P.  v ) ) )
47 ovex 5803 . . . . 5  |-  ( x  .P.  w )  e. 
_V
48 ovex 5803 . . . . 5  |-  ( x  .P.  u )  e. 
_V
49 ovex 5803 . . . . 5  |-  ( y  .P.  z )  e. 
_V
50 ovex 5803 . . . . 5  |-  ( y  .P.  v )  e. 
_V
5147, 48, 49, 39, 40, 50caov4 5971 . . . 4  |-  ( ( ( x  .P.  w
)  +P.  ( x  .P.  u ) )  +P.  ( ( y  .P.  z )  +P.  (
y  .P.  v )
) )  =  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( (
x  .P.  u )  +P.  ( y  .P.  v
) ) )
5246, 51eqtri 2276 . . 3  |-  ( ( x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  ( z  +P.  v
) ) )  =  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) )
531, 2, 3, 4, 5, 6, 10, 21, 32, 43, 52ecovdi 6725 . 2  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) ) )
54 dmaddsr 8661 . . 3  |-  dom  +R  =  ( R.  X.  R. )
55 0nsr 8655 . . 3  |-  -.  (/)  e.  R.
56 dmmulsr 8662 . . 3  |-  dom  .R  =  ( R.  X.  R. )
5754, 55, 56ndmovdistr 5929 . 2  |-  ( -.  ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C
) ) )
5853, 57pm2.61i 158 1  |-  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621  (class class class)co 5778   P.cnp 8435    +P. cpp 8437    .P. cmp 8438    ~R cer 8442   R.cnr 8443    +R cplr 8447    .R cmr 8448
This theorem is referenced by:  pn0sr  8677  axmulass  8733  axdistr  8734
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-recs 6342  df-rdg 6377  df-1o 6433  df-oadd 6437  df-omul 6438  df-er 6614  df-ec 6616  df-qs 6620  df-ni 8450  df-pli 8451  df-mi 8452  df-lti 8453  df-plpq 8486  df-mpq 8487  df-ltpq 8488  df-enq 8489  df-nq 8490  df-erq 8491  df-plq 8492  df-mq 8493  df-1nq 8494  df-rq 8495  df-ltnq 8496  df-np 8559  df-plp 8561  df-mp 8562  df-ltp 8563  df-plpr 8633  df-mpr 8634  df-enr 8635  df-nr 8636  df-plr 8637  df-mr 8638
  Copyright terms: Public domain W3C validator