MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrsr Unicode version

Theorem distrsr 8710
Description: Multiplication of signed reals is distributive. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
distrsr  |-  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) )
Dummy variables  f  g  h  u  v  w  x  y  z are mutually distinct and distinct from all other variables.

Proof of Theorem distrsr
StepHypRef Expression
1 df-nr 8679 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 addsrpr 8694 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  +R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )
3 mulsrpr 8695 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( z  +P.  v )  e.  P.  /\  ( w  +P.  u
)  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. ( z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )  =  [ <. (
( x  .P.  (
z  +P.  v )
)  +P.  ( y  .P.  ( w  +P.  u
) ) ) ,  ( ( x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  ( z  +P.  v ) ) )
>. ]  ~R  )
4 mulsrpr 8695 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
5 mulsrpr 8695 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
( x  .P.  v
)  +P.  ( y  .P.  u ) ) ,  ( ( x  .P.  u )  +P.  (
y  .P.  v )
) >. ]  ~R  )
6 addsrpr 8694 . . 3  |-  ( ( ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P.  /\  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )  /\  ( ( ( x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P.  /\  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
)  ->  ( [ <. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >. ]  ~R  +R  [ <. ( ( x  .P.  v
)  +P.  ( y  .P.  u ) ) ,  ( ( x  .P.  u )  +P.  (
y  .P.  v )
) >. ]  ~R  )  =  [ <. ( ( ( x  .P.  z )  +P.  ( y  .P.  w ) )  +P.  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) ) ,  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( (
x  .P.  u )  +P.  ( y  .P.  v
) ) ) >. ]  ~R  )
7 addclpr 8639 . . . . 5  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  +P.  v
)  e.  P. )
8 addclpr 8639 . . . . 5  |-  ( ( w  e.  P.  /\  u  e.  P. )  ->  ( w  +P.  u
)  e.  P. )
97, 8anim12i 551 . . . 4  |-  ( ( ( z  e.  P.  /\  v  e.  P. )  /\  ( w  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  v )  e.  P.  /\  ( w  +P.  u )  e. 
P. ) )
109an4s 801 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  v )  e.  P.  /\  ( w  +P.  u )  e. 
P. ) )
11 mulclpr 8641 . . . . . 6  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
12 mulclpr 8641 . . . . . 6  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
13 addclpr 8639 . . . . . 6  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
1411, 12, 13syl2an 465 . . . . 5  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
1514an4s 801 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
16 mulclpr 8641 . . . . . 6  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  .P.  w
)  e.  P. )
17 mulclpr 8641 . . . . . 6  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  .P.  z
)  e.  P. )
18 addclpr 8639 . . . . . 6  |-  ( ( ( x  .P.  w
)  e.  P.  /\  ( y  .P.  z
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )
1916, 17, 18syl2an 465 . . . . 5  |-  ( ( ( x  e.  P.  /\  w  e.  P. )  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
2019an42s 802 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
2115, 20jca 520 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  /\  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. ) )
22 mulclpr 8641 . . . . . 6  |-  ( ( x  e.  P.  /\  v  e.  P. )  ->  ( x  .P.  v
)  e.  P. )
23 mulclpr 8641 . . . . . 6  |-  ( ( y  e.  P.  /\  u  e.  P. )  ->  ( y  .P.  u
)  e.  P. )
24 addclpr 8639 . . . . . 6  |-  ( ( ( x  .P.  v
)  e.  P.  /\  ( y  .P.  u
)  e.  P. )  ->  ( ( x  .P.  v )  +P.  (
y  .P.  u )
)  e.  P. )
2522, 23, 24syl2an 465 . . . . 5  |-  ( ( ( x  e.  P.  /\  v  e.  P. )  /\  ( y  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P. )
2625an4s 801 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P. )
27 mulclpr 8641 . . . . . 6  |-  ( ( x  e.  P.  /\  u  e.  P. )  ->  ( x  .P.  u
)  e.  P. )
28 mulclpr 8641 . . . . . 6  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  .P.  v
)  e.  P. )
29 addclpr 8639 . . . . . 6  |-  ( ( ( x  .P.  u
)  e.  P.  /\  ( y  .P.  v
)  e.  P. )  ->  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
3027, 28, 29syl2an 465 . . . . 5  |-  ( ( ( x  e.  P.  /\  u  e.  P. )  /\  ( y  e.  P.  /\  v  e.  P. )
)  ->  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. )
3130an42s 802 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. )
3226, 31jca 520 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( x  .P.  v
)  +P.  ( y  .P.  u ) )  e. 
P.  /\  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. ) )
33 distrpr 8649 . . . . 5  |-  ( x  .P.  ( z  +P.  v ) )  =  ( ( x  .P.  z )  +P.  (
x  .P.  v )
)
34 distrpr 8649 . . . . 5  |-  ( y  .P.  ( w  +P.  u ) )  =  ( ( y  .P.  w )  +P.  (
y  .P.  u )
)
3533, 34oveq12i 5833 . . . 4  |-  ( ( x  .P.  ( z  +P.  v ) )  +P.  ( y  .P.  ( w  +P.  u
) ) )  =  ( ( ( x  .P.  z )  +P.  ( x  .P.  v
) )  +P.  (
( y  .P.  w
)  +P.  ( y  .P.  u ) ) )
36 ovex 5846 . . . . 5  |-  ( x  .P.  z )  e. 
_V
37 ovex 5846 . . . . 5  |-  ( x  .P.  v )  e. 
_V
38 ovex 5846 . . . . 5  |-  ( y  .P.  w )  e. 
_V
39 addcompr 8642 . . . . 5  |-  ( f  +P.  g )  =  ( g  +P.  f
)
40 addasspr 8643 . . . . 5  |-  ( ( f  +P.  g )  +P.  h )  =  ( f  +P.  (
g  +P.  h )
)
41 ovex 5846 . . . . 5  |-  ( y  .P.  u )  e. 
_V
4236, 37, 38, 39, 40, 41caov4 6014 . . . 4  |-  ( ( ( x  .P.  z
)  +P.  ( x  .P.  v ) )  +P.  ( ( y  .P.  w )  +P.  (
y  .P.  u )
) )  =  ( ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  +P.  ( (
x  .P.  v )  +P.  ( y  .P.  u
) ) )
4335, 42eqtri 2306 . . 3  |-  ( ( x  .P.  ( z  +P.  v ) )  +P.  ( y  .P.  ( w  +P.  u
) ) )  =  ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  +P.  (
( x  .P.  v
)  +P.  ( y  .P.  u ) ) )
44 distrpr 8649 . . . . 5  |-  ( x  .P.  ( w  +P.  u ) )  =  ( ( x  .P.  w )  +P.  (
x  .P.  u )
)
45 distrpr 8649 . . . . 5  |-  ( y  .P.  ( z  +P.  v ) )  =  ( ( y  .P.  z )  +P.  (
y  .P.  v )
)
4644, 45oveq12i 5833 . . . 4  |-  ( ( x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  ( z  +P.  v
) ) )  =  ( ( ( x  .P.  w )  +P.  ( x  .P.  u
) )  +P.  (
( y  .P.  z
)  +P.  ( y  .P.  v ) ) )
47 ovex 5846 . . . . 5  |-  ( x  .P.  w )  e. 
_V
48 ovex 5846 . . . . 5  |-  ( x  .P.  u )  e. 
_V
49 ovex 5846 . . . . 5  |-  ( y  .P.  z )  e. 
_V
50 ovex 5846 . . . . 5  |-  ( y  .P.  v )  e. 
_V
5147, 48, 49, 39, 40, 50caov4 6014 . . . 4  |-  ( ( ( x  .P.  w
)  +P.  ( x  .P.  u ) )  +P.  ( ( y  .P.  z )  +P.  (
y  .P.  v )
) )  =  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( (
x  .P.  u )  +P.  ( y  .P.  v
) ) )
5246, 51eqtri 2306 . . 3  |-  ( ( x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  ( z  +P.  v
) ) )  =  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) )
531, 2, 3, 4, 5, 6, 10, 21, 32, 43, 52ecovdi 6768 . 2  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) ) )
54 dmaddsr 8704 . . 3  |-  dom  +R  =  ( R.  X.  R. )
55 0nsr 8698 . . 3  |-  -.  (/)  e.  R.
56 dmmulsr 8705 . . 3  |-  dom  .R  =  ( R.  X.  R. )
5754, 55, 56ndmovdistr 5972 . 2  |-  ( -.  ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C
) ) )
5853, 57pm2.61i 158 1  |-  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    /\ w3a 936    = wceq 1625    e. wcel 1687  (class class class)co 5821   P.cnp 8478    +P. cpp 8480    .P. cmp 8481    ~R cer 8485   R.cnr 8486    +R cplr 8490    .R cmr 8491
This theorem is referenced by:  pn0sr  8720  axmulass  8776  axdistr  8777
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513  ax-inf2 7339
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-ral 2551  df-rex 2552  df-reu 2553  df-rmo 2554  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-pss 3171  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3831  df-int 3866  df-iun 3910  df-br 4027  df-opab 4081  df-mpt 4082  df-tr 4117  df-eprel 4306  df-id 4310  df-po 4315  df-so 4316  df-fr 4353  df-we 4355  df-ord 4396  df-on 4397  df-lim 4398  df-suc 4399  df-om 4658  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-ov 5824  df-oprab 5825  df-mpt2 5826  df-1st 6085  df-2nd 6086  df-recs 6385  df-rdg 6420  df-1o 6476  df-oadd 6480  df-omul 6481  df-er 6657  df-ec 6659  df-qs 6663  df-ni 8493  df-pli 8494  df-mi 8495  df-lti 8496  df-plpq 8529  df-mpq 8530  df-ltpq 8531  df-enq 8532  df-nq 8533  df-erq 8534  df-plq 8535  df-mq 8536  df-1nq 8537  df-rq 8538  df-ltnq 8539  df-np 8602  df-plp 8604  df-mp 8605  df-ltp 8606  df-plpr 8676  df-mpr 8677  df-enr 8678  df-nr 8679  df-plr 8680  df-mr 8681
  Copyright terms: Public domain W3C validator