MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divadddiv Unicode version

Theorem divadddiv 9520
Description: Addition of two ratios. Theorem I.13 of [Apostol] p. 18. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
divadddiv  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  +  ( B  /  D
) )  =  ( ( ( A  x.  D )  +  ( B  x.  C ) )  /  ( C  x.  D ) ) )

Proof of Theorem divadddiv
StepHypRef Expression
1 mulcl 8866 . . . . 5  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  D
)  e.  CC )
21ad2ant2r 727 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( A  x.  D
)  e.  CC )
32adantrl 696 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( A  x.  D )  e.  CC )
4 mulcl 8866 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  e.  CC )
54adantrr 697 . . . 4  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  ( B  x.  C )  e.  CC )
65ad2ant2lr 728 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( B  x.  C )  e.  CC )
7 mulcl 8866 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  x.  D
)  e.  CC )
87ad2ant2r 727 . . . . 5  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  x.  D
)  e.  CC )
9 mulne0 9455 . . . . 5  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  x.  D
)  =/=  0 )
108, 9jca 518 . . . 4  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( ( C  x.  D )  e.  CC  /\  ( C  x.  D
)  =/=  0 ) )
1110adantl 452 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D )  =/=  0 ) )
12 divdir 9492 . . 3  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( B  x.  C
)  e.  CC  /\  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D
)  =/=  0 ) )  ->  ( (
( A  x.  D
)  +  ( B  x.  C ) )  /  ( C  x.  D ) )  =  ( ( ( A  x.  D )  / 
( C  x.  D
) )  +  ( ( B  x.  C
)  /  ( C  x.  D ) ) ) )
133, 6, 11, 12syl3anc 1182 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( ( A  x.  D )  +  ( B  x.  C ) )  / 
( C  x.  D
) )  =  ( ( ( A  x.  D )  /  ( C  x.  D )
)  +  ( ( B  x.  C )  /  ( C  x.  D ) ) ) )
14 simpll 730 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  A  e.  CC )
15 simprr 733 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( D  e.  CC  /\  D  =/=  0 ) )
1615simpld 445 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  D  e.  CC )
1714, 16mulcomd 8901 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( A  x.  D )  =  ( D  x.  A ) )
18 simprll 738 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  C  e.  CC )
1918, 16mulcomd 8901 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( C  x.  D )  =  ( D  x.  C ) )
2017, 19oveq12d 5918 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  x.  D )  / 
( C  x.  D
) )  =  ( ( D  x.  A
)  /  ( D  x.  C ) ) )
21 simprl 732 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( C  e.  CC  /\  C  =/=  0 ) )
22 divcan5 9507 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( ( D  x.  A )  /  ( D  x.  C )
)  =  ( A  /  C ) )
2314, 21, 15, 22syl3anc 1182 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( D  x.  A )  / 
( D  x.  C
) )  =  ( A  /  C ) )
2420, 23eqtrd 2348 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  x.  D )  / 
( C  x.  D
) )  =  ( A  /  C ) )
25 simplr 731 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  B  e.  CC )
2625, 18mulcomd 8901 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( B  x.  C )  =  ( C  x.  B ) )
2726oveq1d 5915 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( B  x.  C )  / 
( C  x.  D
) )  =  ( ( C  x.  B
)  /  ( C  x.  D ) ) )
28 divcan5 9507 . . . . 5  |-  ( ( B  e.  CC  /\  ( D  e.  CC  /\  D  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( C  x.  B )  /  ( C  x.  D )
)  =  ( B  /  D ) )
2925, 15, 21, 28syl3anc 1182 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( C  x.  B )  / 
( C  x.  D
) )  =  ( B  /  D ) )
3027, 29eqtrd 2348 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( B  x.  C )  / 
( C  x.  D
) )  =  ( B  /  D ) )
3124, 30oveq12d 5918 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( ( A  x.  D )  /  ( C  x.  D ) )  +  ( ( B  x.  C )  /  ( C  x.  D )
) )  =  ( ( A  /  C
)  +  ( B  /  D ) ) )
3213, 31eqtr2d 2349 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  +  ( B  /  D
) )  =  ( ( ( A  x.  D )  +  ( B  x.  C ) )  /  ( C  x.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701    =/= wne 2479  (class class class)co 5900   CCcc 8780   0cc0 8782    + caddc 8785    x. cmul 8787    / cdiv 9468
This theorem is referenced by:  divsubdiv  9521  divadddivi  9567  divadddivd  9625  qaddcl  10379
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-po 4351  df-so 4352  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-riota 6346  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469
  Copyright terms: Public domain W3C validator