MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem0 Unicode version

Theorem divalglem0 12466
Description: Lemma for divalg 12476. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1  |-  N  e.  ZZ
divalglem0.2  |-  D  e.  ZZ
Assertion
Ref Expression
divalglem0  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( K  x.  ( abs `  D ) ) ) ) ) )

Proof of Theorem divalglem0
StepHypRef Expression
1 divalglem0.2 . . . . . 6  |-  D  e.  ZZ
2 iddvds 12416 . . . . . . 7  |-  ( D  e.  ZZ  ->  D  ||  D )
3 dvdsabsb 12422 . . . . . . . 8  |-  ( ( D  e.  ZZ  /\  D  e.  ZZ )  ->  ( D  ||  D  <->  D 
||  ( abs `  D
) ) )
43anidms 629 . . . . . . 7  |-  ( D  e.  ZZ  ->  ( D  ||  D  <->  D  ||  ( abs `  D ) ) )
52, 4mpbid 203 . . . . . 6  |-  ( D  e.  ZZ  ->  D  ||  ( abs `  D
) )
61, 5ax-mp 10 . . . . 5  |-  D  ||  ( abs `  D )
7 nn0abscl 11674 . . . . . . . 8  |-  ( D  e.  ZZ  ->  ( abs `  D )  e. 
NN0 )
81, 7ax-mp 10 . . . . . . 7  |-  ( abs `  D )  e.  NN0
98nn0zi 9927 . . . . . 6  |-  ( abs `  D )  e.  ZZ
10 dvdsmultr2 12438 . . . . . 6  |-  ( ( D  e.  ZZ  /\  K  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  ->  ( D  ||  ( abs `  D
)  ->  D  ||  ( K  x.  ( abs `  D ) ) ) )
111, 9, 10mp3an13 1273 . . . . 5  |-  ( K  e.  ZZ  ->  ( D  ||  ( abs `  D
)  ->  D  ||  ( K  x.  ( abs `  D ) ) ) )
126, 11mpi 18 . . . 4  |-  ( K  e.  ZZ  ->  D  ||  ( K  x.  ( abs `  D ) ) )
1312adantl 454 . . 3  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  D  ||  ( K  x.  ( abs `  D
) ) )
14 divalglem0.1 . . . . 5  |-  N  e.  ZZ
15 zsubcl 9940 . . . . 5  |-  ( ( N  e.  ZZ  /\  R  e.  ZZ )  ->  ( N  -  R
)  e.  ZZ )
1614, 15mpan 654 . . . 4  |-  ( R  e.  ZZ  ->  ( N  -  R )  e.  ZZ )
17 zmulcl 9945 . . . . 5  |-  ( ( K  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( K  x.  ( abs `  D ) )  e.  ZZ )
189, 17mpan2 655 . . . 4  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  ZZ )
19 dvds2add 12434 . . . . 5  |-  ( ( D  e.  ZZ  /\  ( N  -  R
)  e.  ZZ  /\  ( K  x.  ( abs `  D ) )  e.  ZZ )  -> 
( ( D  ||  ( N  -  R
)  /\  D  ||  ( K  x.  ( abs `  D ) ) )  ->  D  ||  (
( N  -  R
)  +  ( K  x.  ( abs `  D
) ) ) ) )
201, 19mp3an1 1269 . . . 4  |-  ( ( ( N  -  R
)  e.  ZZ  /\  ( K  x.  ( abs `  D ) )  e.  ZZ )  -> 
( ( D  ||  ( N  -  R
)  /\  D  ||  ( K  x.  ( abs `  D ) ) )  ->  D  ||  (
( N  -  R
)  +  ( K  x.  ( abs `  D
) ) ) ) )
2116, 18, 20syl2an 465 . . 3  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( D  ||  ( N  -  R
)  /\  D  ||  ( K  x.  ( abs `  D ) ) )  ->  D  ||  (
( N  -  R
)  +  ( K  x.  ( abs `  D
) ) ) ) )
2213, 21mpan2d 658 . 2  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( ( N  -  R )  +  ( K  x.  ( abs `  D ) ) ) ) )
23 zcn 9908 . . . 4  |-  ( R  e.  ZZ  ->  R  e.  CC )
2418zcnd 9997 . . . 4  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  CC )
25 zcn 9908 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
2614, 25ax-mp 10 . . . . 5  |-  N  e.  CC
27 subsub 8957 . . . . 5  |-  ( ( N  e.  CC  /\  R  e.  CC  /\  ( K  x.  ( abs `  D ) )  e.  CC )  ->  ( N  -  ( R  -  ( K  x.  ( abs `  D ) ) ) )  =  ( ( N  -  R )  +  ( K  x.  ( abs `  D ) ) ) )
2826, 27mp3an1 1269 . . . 4  |-  ( ( R  e.  CC  /\  ( K  x.  ( abs `  D ) )  e.  CC )  -> 
( N  -  ( R  -  ( K  x.  ( abs `  D
) ) ) )  =  ( ( N  -  R )  +  ( K  x.  ( abs `  D ) ) ) )
2923, 24, 28syl2an 465 . . 3  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  -  ( R  -  ( K  x.  ( abs `  D
) ) ) )  =  ( ( N  -  R )  +  ( K  x.  ( abs `  D ) ) ) )
3029breq2d 3932 . 2  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  ||  ( N  -  ( R  -  ( K  x.  ( abs `  D ) ) ) )  <->  D  ||  (
( N  -  R
)  +  ( K  x.  ( abs `  D
) ) ) ) )
3122, 30sylibrd 227 1  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( K  x.  ( abs `  D ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CCcc 8615    + caddc 8620    x. cmul 8622    - cmin 8917   NN0cn0 9844   ZZcz 9903   abscabs 11596    || cdivides 12405
This theorem is referenced by:  divalglem5  12470
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-divides 12406
  Copyright terms: Public domain W3C validator