MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem2 Structured version   Unicode version

Theorem divalglem2 12907
Description: Lemma for divalg 12915. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1  |-  N  e.  ZZ
divalglem0.2  |-  D  e.  ZZ
divalglem1.3  |-  D  =/=  0
divalglem2.4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
Assertion
Ref Expression
divalglem2  |-  sup ( S ,  RR ,  `'  <  )  e.  S
Distinct variable groups:    D, r    N, r
Allowed substitution hint:    S( r)

Proof of Theorem divalglem2
StepHypRef Expression
1 divalglem2.4 . . . 4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
2 ssrab2 3420 . . . 4  |-  { r  e.  NN0  |  D  ||  ( N  -  r
) }  C_  NN0
31, 2eqsstri 3370 . . 3  |-  S  C_  NN0
4 nn0uz 10512 . . 3  |-  NN0  =  ( ZZ>= `  0 )
53, 4sseqtri 3372 . 2  |-  S  C_  ( ZZ>= `  0 )
6 divalglem0.1 . . . . . 6  |-  N  e.  ZZ
7 divalglem0.2 . . . . . . . . 9  |-  D  e.  ZZ
8 zmulcl 10316 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ )  ->  ( N  x.  D
)  e.  ZZ )
96, 7, 8mp2an 654 . . . . . . . 8  |-  ( N  x.  D )  e.  ZZ
10 nn0abscl 12109 . . . . . . . 8  |-  ( ( N  x.  D )  e.  ZZ  ->  ( abs `  ( N  x.  D ) )  e. 
NN0 )
119, 10ax-mp 8 . . . . . . 7  |-  ( abs `  ( N  x.  D
) )  e.  NN0
1211nn0zi 10298 . . . . . 6  |-  ( abs `  ( N  x.  D
) )  e.  ZZ
13 zaddcl 10309 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( abs `  ( N  x.  D ) )  e.  ZZ )  -> 
( N  +  ( abs `  ( N  x.  D ) ) )  e.  ZZ )
146, 12, 13mp2an 654 . . . . 5  |-  ( N  +  ( abs `  ( N  x.  D )
) )  e.  ZZ
15 divalglem1.3 . . . . . 6  |-  D  =/=  0
166, 7, 15divalglem1 12906 . . . . 5  |-  0  <_  ( N  +  ( abs `  ( N  x.  D ) ) )
17 elnn0z 10286 . . . . 5  |-  ( ( N  +  ( abs `  ( N  x.  D
) ) )  e. 
NN0 
<->  ( ( N  +  ( abs `  ( N  x.  D ) ) )  e.  ZZ  /\  0  <_  ( N  +  ( abs `  ( N  x.  D ) ) ) ) )
1814, 16, 17mpbir2an 887 . . . 4  |-  ( N  +  ( abs `  ( N  x.  D )
) )  e.  NN0
19 iddvds 12855 . . . . . . . 8  |-  ( D  e.  ZZ  ->  D  ||  D )
20 dvdsabsb 12861 . . . . . . . . 9  |-  ( ( D  e.  ZZ  /\  D  e.  ZZ )  ->  ( D  ||  D  <->  D 
||  ( abs `  D
) ) )
2120anidms 627 . . . . . . . 8  |-  ( D  e.  ZZ  ->  ( D  ||  D  <->  D  ||  ( abs `  D ) ) )
2219, 21mpbid 202 . . . . . . 7  |-  ( D  e.  ZZ  ->  D  ||  ( abs `  D
) )
237, 22ax-mp 8 . . . . . 6  |-  D  ||  ( abs `  D )
24 nn0abscl 12109 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( abs `  N )  e. 
NN0 )
256, 24ax-mp 8 . . . . . . . 8  |-  ( abs `  N )  e.  NN0
2625nn0negzi 10308 . . . . . . 7  |-  -u ( abs `  N )  e.  ZZ
27 nn0abscl 12109 . . . . . . . . 9  |-  ( D  e.  ZZ  ->  ( abs `  D )  e. 
NN0 )
287, 27ax-mp 8 . . . . . . . 8  |-  ( abs `  D )  e.  NN0
2928nn0zi 10298 . . . . . . 7  |-  ( abs `  D )  e.  ZZ
30 dvdsmultr2 12877 . . . . . . 7  |-  ( ( D  e.  ZZ  /\  -u ( abs `  N
)  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( D  ||  ( abs `  D )  ->  D  ||  ( -u ( abs `  N )  x.  ( abs `  D
) ) ) )
317, 26, 29, 30mp3an 1279 . . . . . 6  |-  ( D 
||  ( abs `  D
)  ->  D  ||  ( -u ( abs `  N
)  x.  ( abs `  D ) ) )
3223, 31ax-mp 8 . . . . 5  |-  D  ||  ( -u ( abs `  N
)  x.  ( abs `  D ) )
33 zcn 10279 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
346, 33ax-mp 8 . . . . . . . 8  |-  N  e.  CC
35 zcn 10279 . . . . . . . . 9  |-  ( D  e.  ZZ  ->  D  e.  CC )
367, 35ax-mp 8 . . . . . . . 8  |-  D  e.  CC
3734, 36absmuli 12199 . . . . . . 7  |-  ( abs `  ( N  x.  D
) )  =  ( ( abs `  N
)  x.  ( abs `  D ) )
3837negeqi 9291 . . . . . 6  |-  -u ( abs `  ( N  x.  D ) )  = 
-u ( ( abs `  N )  x.  ( abs `  D ) )
39 df-neg 9286 . . . . . . 7  |-  -u ( abs `  ( N  x.  D ) )  =  ( 0  -  ( abs `  ( N  x.  D ) ) )
4034subidi 9363 . . . . . . . 8  |-  ( N  -  N )  =  0
4140oveq1i 6083 . . . . . . 7  |-  ( ( N  -  N )  -  ( abs `  ( N  x.  D )
) )  =  ( 0  -  ( abs `  ( N  x.  D
) ) )
4211nn0cni 10225 . . . . . . . 8  |-  ( abs `  ( N  x.  D
) )  e.  CC
43 subsub4 9326 . . . . . . . 8  |-  ( ( N  e.  CC  /\  N  e.  CC  /\  ( abs `  ( N  x.  D ) )  e.  CC )  ->  (
( N  -  N
)  -  ( abs `  ( N  x.  D
) ) )  =  ( N  -  ( N  +  ( abs `  ( N  x.  D
) ) ) ) )
4434, 34, 42, 43mp3an 1279 . . . . . . 7  |-  ( ( N  -  N )  -  ( abs `  ( N  x.  D )
) )  =  ( N  -  ( N  +  ( abs `  ( N  x.  D )
) ) )
4539, 41, 443eqtr2ri 2462 . . . . . 6  |-  ( N  -  ( N  +  ( abs `  ( N  x.  D ) ) ) )  =  -u ( abs `  ( N  x.  D ) )
4634abscli 12190 . . . . . . . 8  |-  ( abs `  N )  e.  RR
4746recni 9094 . . . . . . 7  |-  ( abs `  N )  e.  CC
4836abscli 12190 . . . . . . . 8  |-  ( abs `  D )  e.  RR
4948recni 9094 . . . . . . 7  |-  ( abs `  D )  e.  CC
5047, 49mulneg1i 9471 . . . . . 6  |-  ( -u ( abs `  N )  x.  ( abs `  D
) )  =  -u ( ( abs `  N
)  x.  ( abs `  D ) )
5138, 45, 503eqtr4i 2465 . . . . 5  |-  ( N  -  ( N  +  ( abs `  ( N  x.  D ) ) ) )  =  (
-u ( abs `  N
)  x.  ( abs `  D ) )
5232, 51breqtrri 4229 . . . 4  |-  D  ||  ( N  -  ( N  +  ( abs `  ( N  x.  D
) ) ) )
53 oveq2 6081 . . . . . 6  |-  ( r  =  ( N  +  ( abs `  ( N  x.  D ) ) )  ->  ( N  -  r )  =  ( N  -  ( N  +  ( abs `  ( N  x.  D
) ) ) ) )
5453breq2d 4216 . . . . 5  |-  ( r  =  ( N  +  ( abs `  ( N  x.  D ) ) )  ->  ( D  ||  ( N  -  r
)  <->  D  ||  ( N  -  ( N  +  ( abs `  ( N  x.  D ) ) ) ) ) )
5554, 1elrab2 3086 . . . 4  |-  ( ( N  +  ( abs `  ( N  x.  D
) ) )  e.  S  <->  ( ( N  +  ( abs `  ( N  x.  D )
) )  e.  NN0  /\  D  ||  ( N  -  ( N  +  ( abs `  ( N  x.  D ) ) ) ) ) )
5618, 52, 55mpbir2an 887 . . 3  |-  ( N  +  ( abs `  ( N  x.  D )
) )  e.  S
57 ne0i 3626 . . 3  |-  ( ( N  +  ( abs `  ( N  x.  D
) ) )  e.  S  ->  S  =/=  (/) )
5856, 57ax-mp 8 . 2  |-  S  =/=  (/)
59 infmssuzcl 10551 . 2  |-  ( ( S  C_  ( ZZ>= ` 
0 )  /\  S  =/=  (/) )  ->  sup ( S ,  RR ,  `'  <  )  e.  S
)
605, 58, 59mp2an 654 1  |-  sup ( S ,  RR ,  `'  <  )  e.  S
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1652    e. wcel 1725    =/= wne 2598   {crab 2701    C_ wss 3312   (/)c0 3620   class class class wbr 4204   `'ccnv 4869   ` cfv 5446  (class class class)co 6073   supcsup 7437   CCcc 8980   RRcr 8981   0cc0 8982    + caddc 8985    x. cmul 8987    < clt 9112    <_ cle 9113    - cmin 9283   -ucneg 9284   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   abscabs 12031    || cdivides 12844
This theorem is referenced by:  divalglem5  12909  divalglem9  12913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-dvds 12845
  Copyright terms: Public domain W3C validator