MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcn Structured version   Unicode version

Theorem divcn 18898
Description: Complex number division is a continuous function, when the second argument is nonzero. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
addcn.j  |-  J  =  ( TopOpen ` fld )
divcn.k  |-  K  =  ( Jt  ( CC  \  { 0 } ) )
Assertion
Ref Expression
divcn  |-  /  e.  ( ( J  tX  K )  Cn  J
)

Proof of Theorem divcn
Dummy variables  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-div 9678 . . 3  |-  /  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( iota_ z  e.  CC ( y  x.  z )  =  x ) )
2 eldifsn 3927 . . . . 5  |-  ( y  e.  ( CC  \  { 0 } )  <-> 
( y  e.  CC  /\  y  =/=  0 ) )
3 divval 9680 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  y  =/=  0 )  ->  (
x  /  y )  =  ( iota_ z  e.  CC ( y  x.  z )  =  x ) )
4 divrec 9694 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  y  =/=  0 )  ->  (
x  /  y )  =  ( x  x.  ( 1  /  y
) ) )
53, 4eqtr3d 2470 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  y  =/=  0 )  ->  ( iota_ z  e.  CC ( y  x.  z )  =  x )  =  ( x  x.  (
1  /  y ) ) )
653expb 1154 . . . . 5  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  y  =/=  0 ) )  ->  ( iota_ z  e.  CC ( y  x.  z )  =  x )  =  ( x  x.  ( 1  /  y ) ) )
72, 6sylan2b 462 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( iota_ z  e.  CC ( y  x.  z )  =  x )  =  ( x  x.  ( 1  /  y ) ) )
87mpt2eq3ia 6139 . . 3  |-  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( iota_ z  e.  CC ( y  x.  z
)  =  x ) )  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( x  x.  (
1  /  y ) ) )
91, 8eqtri 2456 . 2  |-  /  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( x  x.  ( 1  /  y
) ) )
10 addcn.j . . . . . 6  |-  J  =  ( TopOpen ` fld )
1110cnfldtopon 18817 . . . . 5  |-  J  e.  (TopOn `  CC )
1211a1i 11 . . . 4  |-  (  T. 
->  J  e.  (TopOn `  CC ) )
13 divcn.k . . . . 5  |-  K  =  ( Jt  ( CC  \  { 0 } ) )
14 difss 3474 . . . . . 6  |-  ( CC 
\  { 0 } )  C_  CC
15 resttopon 17225 . . . . . 6  |-  ( ( J  e.  (TopOn `  CC )  /\  ( CC  \  { 0 } )  C_  CC )  ->  ( Jt  ( CC  \  { 0 } ) )  e.  (TopOn `  ( CC  \  { 0 } ) ) )
1612, 14, 15sylancl 644 . . . . 5  |-  (  T. 
->  ( Jt  ( CC  \  { 0 } ) )  e.  (TopOn `  ( CC  \  { 0 } ) ) )
1713, 16syl5eqel 2520 . . . 4  |-  (  T. 
->  K  e.  (TopOn `  ( CC  \  {
0 } ) ) )
1812, 17cnmpt1st 17700 . . . 4  |-  (  T. 
->  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  x )  e.  ( ( J  tX  K )  Cn  J
) )
1912, 17cnmpt2nd 17701 . . . . 5  |-  (  T. 
->  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  y )  e.  ( ( J  tX  K )  Cn  K
) )
20 eqid 2436 . . . . . . . 8  |-  ( z  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  z
) )  =  ( z  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
z ) )
21 eldifsn 3927 . . . . . . . . 9  |-  ( z  e.  ( CC  \  { 0 } )  <-> 
( z  e.  CC  /\  z  =/=  0 ) )
22 reccl 9685 . . . . . . . . 9  |-  ( ( z  e.  CC  /\  z  =/=  0 )  -> 
( 1  /  z
)  e.  CC )
2321, 22sylbi 188 . . . . . . . 8  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( 1  / 
z )  e.  CC )
2420, 23fmpti 5892 . . . . . . 7  |-  ( z  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  z
) ) : ( CC  \  { 0 } ) --> CC
25 eqid 2436 . . . . . . . . . 10  |-  ( if ( 1  <_  (
( abs `  x
)  x.  y ) ,  1 ,  ( ( abs `  x
)  x.  y ) )  x.  ( ( abs `  x )  /  2 ) )  =  ( if ( 1  <_  ( ( abs `  x )  x.  y ) ,  1 ,  ( ( abs `  x )  x.  y
) )  x.  (
( abs `  x
)  /  2 ) )
2625reccn2 12390 . . . . . . . . 9  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  RR+ )  ->  E. u  e.  RR+  A. w  e.  ( CC  \  {
0 } ) ( ( abs `  (
w  -  x ) )  <  u  -> 
( abs `  (
( 1  /  w
)  -  ( 1  /  x ) ) )  <  y ) )
27 ovres 6213 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  w  e.  ( CC  \  {
0 } ) )  ->  ( x ( ( abs  o.  -  )  |`  ( ( CC 
\  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) w )  =  ( x ( abs  o.  -  ) w ) )
28 eldifi 3469 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( CC  \  { 0 } )  ->  x  e.  CC )
29 eldifi 3469 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( CC  \  { 0 } )  ->  w  e.  CC )
30 eqid 2436 . . . . . . . . . . . . . . . . . 18  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3130cnmetdval 18805 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  w  e.  CC )  ->  ( x ( abs 
o.  -  ) w
)  =  ( abs `  ( x  -  w
) ) )
32 abssub 12130 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  w  e.  CC )  ->  ( abs `  (
x  -  w ) )  =  ( abs `  ( w  -  x
) ) )
3331, 32eqtrd 2468 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  w  e.  CC )  ->  ( x ( abs 
o.  -  ) w
)  =  ( abs `  ( w  -  x
) ) )
3428, 29, 33syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  w  e.  ( CC  \  {
0 } ) )  ->  ( x ( abs  o.  -  )
w )  =  ( abs `  ( w  -  x ) ) )
3527, 34eqtrd 2468 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  w  e.  ( CC  \  {
0 } ) )  ->  ( x ( ( abs  o.  -  )  |`  ( ( CC 
\  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) w )  =  ( abs `  ( w  -  x
) ) )
3635breq1d 4222 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  w  e.  ( CC  \  {
0 } ) )  ->  ( ( x ( ( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) w )  <  u  <->  ( abs `  ( w  -  x
) )  <  u
) )
37 oveq2 6089 . . . . . . . . . . . . . . . . 17  |-  ( z  =  x  ->  (
1  /  z )  =  ( 1  /  x ) )
38 ovex 6106 . . . . . . . . . . . . . . . . 17  |-  ( 1  /  x )  e. 
_V
3937, 20, 38fvmpt 5806 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( CC  \  { 0 } )  ->  ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  z
) ) `  x
)  =  ( 1  /  x ) )
40 oveq2 6089 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  (
1  /  z )  =  ( 1  /  w ) )
41 ovex 6106 . . . . . . . . . . . . . . . . 17  |-  ( 1  /  w )  e. 
_V
4240, 20, 41fvmpt 5806 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( CC  \  { 0 } )  ->  ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  z
) ) `  w
)  =  ( 1  /  w ) )
4339, 42oveqan12d 6100 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  w  e.  ( CC  \  {
0 } ) )  ->  ( ( ( z  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
z ) ) `  x ) ( abs 
o.  -  ) (
( z  e.  ( CC  \  { 0 } )  |->  ( 1  /  z ) ) `
 w ) )  =  ( ( 1  /  x ) ( abs  o.  -  )
( 1  /  w
) ) )
44 eldifsn 3927 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
45 reccl 9685 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( 1  /  x
)  e.  CC )
4644, 45sylbi 188 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( CC  \  { 0 } )  ->  ( 1  /  x )  e.  CC )
47 eldifsn 3927 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  ( CC  \  { 0 } )  <-> 
( w  e.  CC  /\  w  =/=  0 ) )
48 reccl 9685 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  CC  /\  w  =/=  0 )  -> 
( 1  /  w
)  e.  CC )
4947, 48sylbi 188 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( CC  \  { 0 } )  ->  ( 1  /  w )  e.  CC )
5030cnmetdval 18805 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  /  x
)  e.  CC  /\  ( 1  /  w
)  e.  CC )  ->  ( ( 1  /  x ) ( abs  o.  -  )
( 1  /  w
) )  =  ( abs `  ( ( 1  /  x )  -  ( 1  /  w ) ) ) )
51 abssub 12130 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  /  x
)  e.  CC  /\  ( 1  /  w
)  e.  CC )  ->  ( abs `  (
( 1  /  x
)  -  ( 1  /  w ) ) )  =  ( abs `  ( ( 1  /  w )  -  (
1  /  x ) ) ) )
5250, 51eqtrd 2468 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  /  x
)  e.  CC  /\  ( 1  /  w
)  e.  CC )  ->  ( ( 1  /  x ) ( abs  o.  -  )
( 1  /  w
) )  =  ( abs `  ( ( 1  /  w )  -  ( 1  /  x ) ) ) )
5346, 49, 52syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  w  e.  ( CC  \  {
0 } ) )  ->  ( ( 1  /  x ) ( abs  o.  -  )
( 1  /  w
) )  =  ( abs `  ( ( 1  /  w )  -  ( 1  /  x ) ) ) )
5443, 53eqtrd 2468 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  w  e.  ( CC  \  {
0 } ) )  ->  ( ( ( z  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
z ) ) `  x ) ( abs 
o.  -  ) (
( z  e.  ( CC  \  { 0 } )  |->  ( 1  /  z ) ) `
 w ) )  =  ( abs `  (
( 1  /  w
)  -  ( 1  /  x ) ) ) )
5554breq1d 4222 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  w  e.  ( CC  \  {
0 } ) )  ->  ( ( ( ( z  e.  ( CC  \  { 0 } )  |->  ( 1  /  z ) ) `
 x ) ( abs  o.  -  )
( ( z  e.  ( CC  \  {
0 } )  |->  ( 1  /  z ) ) `  w ) )  <  y  <->  ( abs `  ( ( 1  /  w )  -  (
1  /  x ) ) )  <  y
) )
5636, 55imbi12d 312 . . . . . . . . . . . 12  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  w  e.  ( CC  \  {
0 } ) )  ->  ( ( ( x ( ( abs 
o.  -  )  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) w )  < 
u  ->  ( (
( z  e.  ( CC  \  { 0 } )  |->  ( 1  /  z ) ) `
 x ) ( abs  o.  -  )
( ( z  e.  ( CC  \  {
0 } )  |->  ( 1  /  z ) ) `  w ) )  <  y )  <-> 
( ( abs `  (
w  -  x ) )  <  u  -> 
( abs `  (
( 1  /  w
)  -  ( 1  /  x ) ) )  <  y ) ) )
5756ralbidva 2721 . . . . . . . . . . 11  |-  ( x  e.  ( CC  \  { 0 } )  ->  ( A. w  e.  ( CC  \  {
0 } ) ( ( x ( ( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) w )  <  u  ->  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( 1  /  z ) ) `  x ) ( abs  o.  -  ) ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  z
) ) `  w
) )  <  y
)  <->  A. w  e.  ( CC  \  { 0 } ) ( ( abs `  ( w  -  x ) )  <  u  ->  ( abs `  ( ( 1  /  w )  -  ( 1  /  x
) ) )  < 
y ) ) )
5857rexbidv 2726 . . . . . . . . . 10  |-  ( x  e.  ( CC  \  { 0 } )  ->  ( E. u  e.  RR+  A. w  e.  ( CC  \  {
0 } ) ( ( x ( ( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) w )  <  u  ->  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( 1  /  z ) ) `  x ) ( abs  o.  -  ) ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  z
) ) `  w
) )  <  y
)  <->  E. u  e.  RR+  A. w  e.  ( CC 
\  { 0 } ) ( ( abs `  ( w  -  x
) )  <  u  ->  ( abs `  (
( 1  /  w
)  -  ( 1  /  x ) ) )  <  y ) ) )
5958adantr 452 . . . . . . . . 9  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  RR+ )  ->  ( E. u  e.  RR+  A. w  e.  ( CC  \  {
0 } ) ( ( x ( ( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) w )  <  u  ->  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( 1  /  z ) ) `  x ) ( abs  o.  -  ) ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  z
) ) `  w
) )  <  y
)  <->  E. u  e.  RR+  A. w  e.  ( CC 
\  { 0 } ) ( ( abs `  ( w  -  x
) )  <  u  ->  ( abs `  (
( 1  /  w
)  -  ( 1  /  x ) ) )  <  y ) ) )
6026, 59mpbird 224 . . . . . . . 8  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  RR+ )  ->  E. u  e.  RR+  A. w  e.  ( CC  \  {
0 } ) ( ( x ( ( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) w )  <  u  ->  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( 1  /  z ) ) `  x ) ( abs  o.  -  ) ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  z
) ) `  w
) )  <  y
) )
6160rgen2 2802 . . . . . . 7  |-  A. x  e.  ( CC  \  {
0 } ) A. y  e.  RR+  E. u  e.  RR+  A. w  e.  ( CC  \  {
0 } ) ( ( x ( ( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) w )  <  u  ->  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( 1  /  z ) ) `  x ) ( abs  o.  -  ) ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  z
) ) `  w
) )  <  y
)
62 cnxmet 18807 . . . . . . . . 9  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
63 xmetres2 18391 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  ( CC  \  { 0 } )  C_  CC )  ->  ( ( abs 
o.  -  )  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) )  e.  ( * Met `  ( CC 
\  { 0 } ) ) )
6462, 14, 63mp2an 654 . . . . . . . 8  |-  ( ( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) )  e.  ( * Met `  ( CC  \  { 0 } ) )
65 eqid 2436 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) )  =  ( ( abs  o.  -  )  |`  ( ( CC 
\  { 0 } )  X.  ( CC 
\  { 0 } ) ) )
6610cnfldtopn 18816 . . . . . . . . . . . 12  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
67 eqid 2436 . . . . . . . . . . . 12  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) )  =  ( MetOpen `  (
( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) )
6865, 66, 67metrest 18554 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  ( CC  \  { 0 } )  C_  CC )  ->  ( Jt  ( CC 
\  { 0 } ) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) ) )
6962, 14, 68mp2an 654 . . . . . . . . . 10  |-  ( Jt  ( CC  \  { 0 } ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) )
7013, 69eqtri 2456 . . . . . . . . 9  |-  K  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) )
7170, 66metcn 18573 . . . . . . . 8  |-  ( ( ( ( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) )  e.  ( * Met `  ( CC  \  { 0 } ) )  /\  ( abs  o.  -  )  e.  ( * Met `  CC ) )  ->  (
( z  e.  ( CC  \  { 0 } )  |->  ( 1  /  z ) )  e.  ( K  Cn  J )  <->  ( (
z  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
z ) ) : ( CC  \  {
0 } ) --> CC 
/\  A. x  e.  ( CC  \  { 0 } ) A. y  e.  RR+  E. u  e.  RR+  A. w  e.  ( CC  \  { 0 } ) ( ( x ( ( abs 
o.  -  )  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) w )  < 
u  ->  ( (
( z  e.  ( CC  \  { 0 } )  |->  ( 1  /  z ) ) `
 x ) ( abs  o.  -  )
( ( z  e.  ( CC  \  {
0 } )  |->  ( 1  /  z ) ) `  w ) )  <  y ) ) ) )
7264, 62, 71mp2an 654 . . . . . . 7  |-  ( ( z  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
z ) )  e.  ( K  Cn  J
)  <->  ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  z
) ) : ( CC  \  { 0 } ) --> CC  /\  A. x  e.  ( CC 
\  { 0 } ) A. y  e.  RR+  E. u  e.  RR+  A. w  e.  ( CC 
\  { 0 } ) ( ( x ( ( abs  o.  -  )  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) w )  <  u  -> 
( ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  z
) ) `  x
) ( abs  o.  -  ) ( ( z  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
z ) ) `  w ) )  < 
y ) ) )
7324, 61, 72mpbir2an 887 . . . . . 6  |-  ( z  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  z
) )  e.  ( K  Cn  J )
7473a1i 11 . . . . 5  |-  (  T. 
->  ( z  e.  ( CC  \  { 0 } )  |->  ( 1  /  z ) )  e.  ( K  Cn  J ) )
75 oveq2 6089 . . . . 5  |-  ( z  =  y  ->  (
1  /  z )  =  ( 1  / 
y ) )
7612, 17, 19, 17, 74, 75cnmpt21 17703 . . . 4  |-  (  T. 
->  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( 1  / 
y ) )  e.  ( ( J  tX  K )  Cn  J
) )
7710mulcn 18897 . . . . 5  |-  x.  e.  ( ( J  tX  J )  Cn  J
)
7877a1i 11 . . . 4  |-  (  T. 
->  x.  e.  ( ( J  tX  J )  Cn  J ) )
7912, 17, 18, 76, 78cnmpt22f 17707 . . 3  |-  (  T. 
->  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( x  x.  ( 1  /  y
) ) )  e.  ( ( J  tX  K )  Cn  J
) )
8079trud 1332 . 2  |-  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( x  x.  (
1  /  y ) ) )  e.  ( ( J  tX  K
)  Cn  J )
819, 80eqeltri 2506 1  |-  /  e.  ( ( J  tX  K )  Cn  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    T. wtru 1325    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706    \ cdif 3317    C_ wss 3320   ifcif 3739   {csn 3814   class class class wbr 4212    e. cmpt 4266    X. cxp 4876    |` cres 4880    o. ccom 4882   -->wf 5450   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   iota_crio 6542   CCcc 8988   0cc0 8990   1c1 8991    x. cmul 8995    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   2c2 10049   RR+crp 10612   abscabs 12039   ↾t crest 13648   TopOpenctopn 13649   * Metcxmt 16686   MetOpencmopn 16691  ℂfldccnfld 16703  TopOnctopon 16959    Cn ccn 17288    tX ctx 17592
This theorem is referenced by:  cdivcncf  18947  evth  18984  dvcnvlem  19860  lhop1lem  19897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-icc 10923  df-fz 11044  df-fzo 11136  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cn 17291  df-cnp 17292  df-tx 17594  df-hmeo 17787  df-xms 18350  df-ms 18351  df-tms 18352
  Copyright terms: Public domain W3C validator