MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmuldiv Unicode version

Theorem divmuldiv 9393
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
divmuldiv  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )

Proof of Theorem divmuldiv
StepHypRef Expression
1 3anass 943 . . 3  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  <->  ( A  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) ) )
2 3anass 943 . . 3  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  <->  ( B  e.  CC  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )
3 divcl 9363 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( A  /  C )  e.  CC )
4 divcl 9363 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  ( B  /  D )  e.  CC )
5 mulcl 8754 . . . . . 6  |-  ( ( ( A  /  C
)  e.  CC  /\  ( B  /  D
)  e.  CC )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  e.  CC )
63, 4, 5syl2an 465 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  e.  CC )
7 ax-mulcl 8732 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  x.  D
)  e.  CC )
87ad2ant2r 730 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  x.  D
)  e.  CC )
983adantr1 1119 . . . . . 6  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  x.  D
)  e.  CC )
1093adantl1 1116 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( C  x.  D )  e.  CC )
11 mulne0 9343 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  x.  D
)  =/=  0 )
12113adantr1 1119 . . . . . 6  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  x.  D
)  =/=  0 )
13123adantl1 1116 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( C  x.  D )  =/=  0
)
14 divcan3 9381 . . . . 5  |-  ( ( ( ( A  /  C )  x.  ( B  /  D ) )  e.  CC  /\  ( C  x.  D )  e.  CC  /\  ( C  x.  D )  =/=  0 )  ->  (
( ( C  x.  D )  x.  (
( A  /  C
)  x.  ( B  /  D ) ) )  /  ( C  x.  D ) )  =  ( ( A  /  C )  x.  ( B  /  D
) ) )
156, 10, 13, 14syl3anc 1187 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( ( C  x.  D )  x.  ( ( A  /  C )  x.  ( B  /  D
) ) )  / 
( C  x.  D
) )  =  ( ( A  /  C
)  x.  ( B  /  D ) ) )
16 simp2 961 . . . . . . . 8  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  C  e.  CC )
1716, 3jca 520 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( C  e.  CC  /\  ( A  /  C )  e.  CC ) )
18 simp2 961 . . . . . . . 8  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  D  e.  CC )
1918, 4jca 520 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  ( D  e.  CC  /\  ( B  /  D )  e.  CC ) )
20 mul4 8914 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  ( A  /  C
)  e.  CC )  /\  ( D  e.  CC  /\  ( B  /  D )  e.  CC ) )  -> 
( ( C  x.  ( A  /  C
) )  x.  ( D  x.  ( B  /  D ) ) )  =  ( ( C  x.  D )  x.  ( ( A  /  C )  x.  ( B  /  D ) ) ) )
2117, 19, 20syl2an 465 . . . . . 6  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( C  x.  ( A  /  C ) )  x.  ( D  x.  ( B  /  D ) ) )  =  ( ( C  x.  D )  x.  ( ( A  /  C )  x.  ( B  /  D
) ) ) )
22 divcan2 9365 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( C  x.  ( A  /  C ) )  =  A )
23 divcan2 9365 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  ( D  x.  ( B  /  D ) )  =  B )
2422, 23oveqan12d 5776 . . . . . 6  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( C  x.  ( A  /  C ) )  x.  ( D  x.  ( B  /  D ) ) )  =  ( A  x.  B ) )
2521, 24eqtr3d 2290 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( C  x.  D )  x.  ( ( A  /  C )  x.  ( B  /  D ) ) )  =  ( A  x.  B ) )
2625oveq1d 5772 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( ( C  x.  D )  x.  ( ( A  /  C )  x.  ( B  /  D
) ) )  / 
( C  x.  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
2715, 26eqtr3d 2290 . . 3  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
281, 2, 27syl2anbr 468 . 2  |-  ( ( ( A  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  /\  ( B  e.  CC  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
2928an4s 802 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419  (class class class)co 5757   CCcc 8668   0cc0 8670    x. cmul 8675    / cdiv 9356
This theorem is referenced by:  divdivdiv  9394  divcan5  9395  divmul13  9396  divmul24  9397  divmuldivi  9453  divmuldivd  9510  qmulcl  10266  mulexpz  11073  expaddz  11077  sqdiv  11100  faclbnd2  11235  bcm1k  11258  bcp1n  11259  pythagtriplem16  12810  dvsqr  20011  dquartlem1  20074  basellem8  20252  dchrvmasumlem1  20571  dchrvmasum2lem  20572  pntlemr  20678  pntlemf  20681
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-po 4251  df-so 4252  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-iota 6190  df-riota 6237  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357
  Copyright terms: Public domain W3C validator