MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divrec Unicode version

Theorem divrec 9436
Description: Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
divrec  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )

Proof of Theorem divrec
StepHypRef Expression
1 simp2 958 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  B  e.  CC )
2 simp1 957 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  A  e.  CC )
3 reccl 9427 . . . . 5  |-  ( ( B  e.  CC  /\  B  =/=  0 )  -> 
( 1  /  B
)  e.  CC )
433adant1 975 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  (
1  /  B )  e.  CC )
51, 2, 4mul12d 9017 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( B  x.  ( A  x.  ( 1  /  B
) ) )  =  ( A  x.  ( B  x.  ( 1  /  B ) ) ) )
6 recid 9434 . . . . 5  |-  ( ( B  e.  CC  /\  B  =/=  0 )  -> 
( B  x.  (
1  /  B ) )  =  1 )
763adant1 975 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( B  x.  ( 1  /  B ) )  =  1 )
87oveq2d 5836 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  x.  ( B  x.  ( 1  /  B
) ) )  =  ( A  x.  1 ) )
92mulid1d 8848 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  x.  1 )  =  A )
105, 8, 93eqtrd 2321 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( B  x.  ( A  x.  ( 1  /  B
) ) )  =  A )
112, 4mulcld 8851 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  x.  ( 1  /  B ) )  e.  CC )
12 3simpc 956 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( B  e.  CC  /\  B  =/=  0 ) )
13 divmul 9423 . . 3  |-  ( ( A  e.  CC  /\  ( A  x.  (
1  /  B ) )  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  ->  ( ( A  /  B )  =  ( A  x.  (
1  /  B ) )  <->  ( B  x.  ( A  x.  (
1  /  B ) ) )  =  A ) )
142, 11, 12, 13syl3anc 1184 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  (
( A  /  B
)  =  ( A  x.  ( 1  /  B ) )  <->  ( B  x.  ( A  x.  (
1  /  B ) ) )  =  A ) )
1510, 14mpbird 225 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2448  (class class class)co 5820   CCcc 8731   0cc0 8733   1c1 8734    x. cmul 8738    / cdiv 9419
This theorem is referenced by:  divrec2  9437  divass  9438  divdir  9443  divid  9447  divneg  9451  rec11  9454  divdiv32  9464  redivcl  9475  divreczi  9494  divrecd  9535  ltdiv2  9637  lediv2  9642  qdivcl  10333  expdiv  11147  0.999...  12332  efsub  12375  efival  12427  ef01bndlem  12459  cos01bnd  12461  rpnnen2lem11  12498  prmreclem5  12962  divcn  18367  divccn  18372  subfaclim  23124  lediv2aALT  23418  heiborlem7  25941  ofdivrec  26943  stoweidlem36  27185  wallispilem4  27217
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-iota 6253  df-riota 6300  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420
  Copyright terms: Public domain W3C validator