MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divrec2d Structured version   Unicode version

Theorem divrec2d 9796
Description: Relationship between division and reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1  |-  ( ph  ->  A  e.  CC )
divcld.2  |-  ( ph  ->  B  e.  CC )
divcld.3  |-  ( ph  ->  B  =/=  0 )
Assertion
Ref Expression
divrec2d  |-  ( ph  ->  ( A  /  B
)  =  ( ( 1  /  B )  x.  A ) )

Proof of Theorem divrec2d
StepHypRef Expression
1 div1d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 divcld.2 . 2  |-  ( ph  ->  B  e.  CC )
3 divcld.3 . 2  |-  ( ph  ->  B  =/=  0 )
4 divrec2 9697 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  /  B )  =  ( ( 1  /  B )  x.  A
) )
51, 2, 3, 4syl3anc 1185 1  |-  ( ph  ->  ( A  /  B
)  =  ( ( 1  /  B )  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726    =/= wne 2601  (class class class)co 6083   CCcc 8990   0cc0 8992   1c1 8993    x. cmul 8997    / cdiv 9679
This theorem is referenced by:  expaddzlem  11425  rediv  11938  imdiv  11945  geo2sum  12652  efaddlem  12697  sinhval  12757  sca2rab  19410  itg2mulclem  19640  itg2mulc  19641  dvmptdivc  19853  dvexp3  19864  dvlip  19879  dvradcnv  20339  tanregt0  20443  logtayl  20553  cxpeq  20643  chordthmlem2  20676  chordthmlem4  20678  dquartlem1  20693  asinlem3  20713  asinsin  20734  efiatan2  20759  atantayl2  20780  amgmlem  20830  basellem8  20872  chebbnd1lem3  21167  dchrmusum2  21190  dchrvmasumlem3  21195  dchrisum0lem1  21212  selberg2lem  21246  logdivbnd  21252  pntrsumo1  21261  pntrlog2bndlem5  21277  pntibndlem2  21287  pntlemr  21298  pntlemo  21303  nmblolbii  22302  blocnilem  22307  nmbdoplbi  23529  nmcoplbi  23533  nmbdfnlbi  23554  nmcfnlbi  23557  clim2div  25219  dvreasin  26292  areacirclem1  26294  areacirclem4  26297  wallispi2lem1  27798  stirlinglem4  27804  stirlinglem5  27805  stirlinglem15  27815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-po 4505  df-so 4506  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-riota 6551  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680
  Copyright terms: Public domain W3C validator