MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divstgphaus Structured version   Unicode version

Theorem divstgphaus 18144
Description: The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
divstgp.h  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
divstgphaus.j  |-  J  =  ( TopOpen `  G )
divstgphaus.k  |-  K  =  ( TopOpen `  H )
Assertion
Ref Expression
divstgphaus  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  K  e.  Haus )

Proof of Theorem divstgphaus
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 divstgp.h . . . . . . . 8  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
2 eqid 2435 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
31, 2divs0 14990 . . . . . . 7  |-  ( Y  e.  (NrmSGrp `  G
)  ->  [ ( 0g `  G ) ] ( G ~QG  Y )  =  ( 0g `  H ) )
433ad2ant2 979 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  [ ( 0g
`  G ) ] ( G ~QG  Y )  =  ( 0g `  H ) )
5 tgpgrp 18100 . . . . . . . . 9  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
653ad2ant1 978 . . . . . . . 8  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  G  e.  Grp )
7 eqid 2435 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
87, 2grpidcl 14825 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
96, 8syl 16 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( 0g `  G )  e.  (
Base `  G )
)
10 ovex 6098 . . . . . . . 8  |-  ( G ~QG  Y )  e.  _V
1110ecelqsi 6952 . . . . . . 7  |-  ( ( 0g `  G )  e.  ( Base `  G
)  ->  [ ( 0g `  G ) ] ( G ~QG  Y )  e.  ( ( Base `  G
) /. ( G ~QG  Y ) ) )
129, 11syl 16 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  [ ( 0g
`  G ) ] ( G ~QG  Y )  e.  ( ( Base `  G
) /. ( G ~QG  Y ) ) )
134, 12eqeltrrd 2510 . . . . 5  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( 0g `  H )  e.  ( ( Base `  G
) /. ( G ~QG  Y ) ) )
1413snssd 3935 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  { ( 0g
`  H ) } 
C_  ( ( Base `  G ) /. ( G ~QG  Y ) ) )
15 eqid 2435 . . . . . . 7  |-  ( x  e.  ( Base `  G
)  |->  [ x ]
( G ~QG  Y ) )  =  ( x  e.  (
Base `  G )  |->  [ x ] ( G ~QG  Y ) )
1615mptpreima 5355 . . . . . 6  |-  ( `' ( x  e.  (
Base `  G )  |->  [ x ] ( G ~QG  Y ) ) " { ( 0g `  H ) } )  =  { x  e.  ( Base `  G
)  |  [ x ] ( G ~QG  Y )  e.  { ( 0g
`  H ) } }
17 nsgsubg 14964 . . . . . . . . . . 11  |-  ( Y  e.  (NrmSGrp `  G
)  ->  Y  e.  (SubGrp `  G ) )
18173ad2ant2 979 . . . . . . . . . 10  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  Y  e.  (SubGrp `  G ) )
19 eqid 2435 . . . . . . . . . . 11  |-  ( G ~QG  Y )  =  ( G ~QG  Y )
207, 19, 2eqgid 14984 . . . . . . . . . 10  |-  ( Y  e.  (SubGrp `  G
)  ->  [ ( 0g `  G ) ] ( G ~QG  Y )  =  Y )
2118, 20syl 16 . . . . . . . . 9  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  [ ( 0g
`  G ) ] ( G ~QG  Y )  =  Y )
227subgss 14937 . . . . . . . . . 10  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  ( Base `  G ) )
2318, 22syl 16 . . . . . . . . 9  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  Y  C_  ( Base `  G ) )
2421, 23eqsstrd 3374 . . . . . . . 8  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  [ ( 0g
`  G ) ] ( G ~QG  Y )  C_  ( Base `  G ) )
25 dfss1 3537 . . . . . . . 8  |-  ( [ ( 0g `  G
) ] ( G ~QG  Y )  C_  ( Base `  G )  <->  ( ( Base `  G )  i^i 
[ ( 0g `  G ) ] ( G ~QG  Y ) )  =  [ ( 0g `  G ) ] ( G ~QG  Y ) )
2624, 25sylib 189 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( ( Base `  G )  i^i  [
( 0g `  G
) ] ( G ~QG  Y ) )  =  [
( 0g `  G
) ] ( G ~QG  Y ) )
277, 19eqger 14982 . . . . . . . . . . . . 13  |-  ( Y  e.  (SubGrp `  G
)  ->  ( G ~QG  Y
)  Er  ( Base `  G ) )
2818, 27syl 16 . . . . . . . . . . . 12  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( G ~QG  Y )  Er  ( Base `  G
) )
2928, 9erth 6941 . . . . . . . . . . 11  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( ( 0g
`  G ) ( G ~QG  Y ) x  <->  [ ( 0g `  G ) ] ( G ~QG  Y )  =  [
x ] ( G ~QG  Y ) ) )
3029adantr 452 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  Y  e.  ( Clsd `  J )
)  /\  x  e.  ( Base `  G )
)  ->  ( ( 0g `  G ) ( G ~QG  Y ) x  <->  [ ( 0g `  G ) ] ( G ~QG  Y )  =  [
x ] ( G ~QG  Y ) ) )
314adantr 452 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  Y  e.  ( Clsd `  J )
)  /\  x  e.  ( Base `  G )
)  ->  [ ( 0g `  G ) ] ( G ~QG  Y )  =  ( 0g `  H ) )
3231eqeq1d 2443 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  Y  e.  ( Clsd `  J )
)  /\  x  e.  ( Base `  G )
)  ->  ( [
( 0g `  G
) ] ( G ~QG  Y )  =  [ x ] ( G ~QG  Y )  <-> 
( 0g `  H
)  =  [ x ] ( G ~QG  Y ) ) )
3330, 32bitrd 245 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  Y  e.  ( Clsd `  J )
)  /\  x  e.  ( Base `  G )
)  ->  ( ( 0g `  G ) ( G ~QG  Y ) x  <->  ( 0g `  H )  =  [
x ] ( G ~QG  Y ) ) )
34 vex 2951 . . . . . . . . . 10  |-  x  e. 
_V
35 fvex 5734 . . . . . . . . . 10  |-  ( 0g
`  G )  e. 
_V
3634, 35elec 6936 . . . . . . . . 9  |-  ( x  e.  [ ( 0g
`  G ) ] ( G ~QG  Y )  <->  ( 0g `  G ) ( G ~QG  Y ) x )
37 fvex 5734 . . . . . . . . . . 11  |-  ( 0g
`  H )  e. 
_V
3837elsnc2 3835 . . . . . . . . . 10  |-  ( [ x ] ( G ~QG  Y )  e.  { ( 0g `  H ) }  <->  [ x ] ( G ~QG  Y )  =  ( 0g `  H ) )
39 eqcom 2437 . . . . . . . . . 10  |-  ( [ x ] ( G ~QG  Y )  =  ( 0g
`  H )  <->  ( 0g `  H )  =  [
x ] ( G ~QG  Y ) )
4038, 39bitri 241 . . . . . . . . 9  |-  ( [ x ] ( G ~QG  Y )  e.  { ( 0g `  H ) }  <->  ( 0g `  H )  =  [
x ] ( G ~QG  Y ) )
4133, 36, 403bitr4g 280 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  Y  e.  ( Clsd `  J )
)  /\  x  e.  ( Base `  G )
)  ->  ( x  e.  [ ( 0g `  G ) ] ( G ~QG  Y )  <->  [ x ] ( G ~QG  Y )  e.  { ( 0g
`  H ) } ) )
4241rabbi2dva 3541 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( ( Base `  G )  i^i  [
( 0g `  G
) ] ( G ~QG  Y ) )  =  {
x  e.  ( Base `  G )  |  [
x ] ( G ~QG  Y )  e.  { ( 0g `  H ) } } )
4326, 42, 213eqtr3d 2475 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  { x  e.  ( Base `  G
)  |  [ x ] ( G ~QG  Y )  e.  { ( 0g
`  H ) } }  =  Y )
4416, 43syl5eq 2479 . . . . 5  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( `' ( x  e.  ( Base `  G )  |->  [ x ] ( G ~QG  Y ) ) " { ( 0g `  H ) } )  =  Y )
45 simp3 959 . . . . 5  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  Y  e.  (
Clsd `  J )
)
4644, 45eqeltrd 2509 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( `' ( x  e.  ( Base `  G )  |->  [ x ] ( G ~QG  Y ) ) " { ( 0g `  H ) } )  e.  (
Clsd `  J )
)
47 divstgphaus.j . . . . . . 7  |-  J  =  ( TopOpen `  G )
4847, 7tgptopon 18104 . . . . . 6  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  ( Base `  G
) ) )
49483ad2ant1 978 . . . . 5  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  J  e.  (TopOn `  ( Base `  G
) ) )
501a1i 11 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  H  =  ( G  /.s  ( G ~QG  Y ) ) )
51 eqidd 2436 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( Base `  G
)  =  ( Base `  G ) )
5210a1i 11 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( G ~QG  Y )  e.  _V )
53 simp1 957 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  G  e.  TopGrp )
5450, 51, 15, 52, 53divslem 13760 . . . . 5  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( x  e.  ( Base `  G
)  |->  [ x ]
( G ~QG  Y ) ) : ( Base `  G
) -onto-> ( ( Base `  G ) /. ( G ~QG  Y ) ) )
55 qtopcld 17737 . . . . 5  |-  ( ( J  e.  (TopOn `  ( Base `  G )
)  /\  ( x  e.  ( Base `  G
)  |->  [ x ]
( G ~QG  Y ) ) : ( Base `  G
) -onto-> ( ( Base `  G ) /. ( G ~QG  Y ) ) )  ->  ( { ( 0g `  H ) }  e.  ( Clsd `  ( J qTop  ( x  e.  ( Base `  G
)  |->  [ x ]
( G ~QG  Y ) ) ) )  <->  ( { ( 0g `  H ) }  C_  ( ( Base `  G ) /. ( G ~QG  Y ) )  /\  ( `' ( x  e.  ( Base `  G
)  |->  [ x ]
( G ~QG  Y ) ) " { ( 0g `  H ) } )  e.  ( Clsd `  J
) ) ) )
5649, 54, 55syl2anc 643 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( { ( 0g `  H ) }  e.  ( Clsd `  ( J qTop  ( x  e.  ( Base `  G
)  |->  [ x ]
( G ~QG  Y ) ) ) )  <->  ( { ( 0g `  H ) }  C_  ( ( Base `  G ) /. ( G ~QG  Y ) )  /\  ( `' ( x  e.  ( Base `  G
)  |->  [ x ]
( G ~QG  Y ) ) " { ( 0g `  H ) } )  e.  ( Clsd `  J
) ) ) )
5714, 46, 56mpbir2and 889 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  { ( 0g
`  H ) }  e.  ( Clsd `  ( J qTop  ( x  e.  (
Base `  G )  |->  [ x ] ( G ~QG  Y ) ) ) ) )
5850, 51, 15, 52, 53divsval 13759 . . . . 5  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  H  =  ( ( x  e.  (
Base `  G )  |->  [ x ] ( G ~QG  Y ) )  "s  G
) )
59 divstgphaus.k . . . . 5  |-  K  =  ( TopOpen `  H )
6058, 51, 54, 53, 47, 59imastopn 17744 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  K  =  ( J qTop  ( x  e.  ( Base `  G
)  |->  [ x ]
( G ~QG  Y ) ) ) )
6160fveq2d 5724 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( Clsd `  K
)  =  ( Clsd `  ( J qTop  ( x  e.  ( Base `  G
)  |->  [ x ]
( G ~QG  Y ) ) ) ) )
6257, 61eleqtrrd 2512 . 2  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  { ( 0g
`  H ) }  e.  ( Clsd `  K
) )
631divstgp 18143 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )
)  ->  H  e.  TopGrp )
64633adant3 977 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  H  e.  TopGrp )
65 eqid 2435 . . . 4  |-  ( 0g
`  H )  =  ( 0g `  H
)
6665, 59tgphaus 18138 . . 3  |-  ( H  e.  TopGrp  ->  ( K  e. 
Haus 
<->  { ( 0g `  H ) }  e.  ( Clsd `  K )
) )
6764, 66syl 16 . 2  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  ( K  e. 
Haus 
<->  { ( 0g `  H ) }  e.  ( Clsd `  K )
) )
6862, 67mpbird 224 1  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  Y  e.  ( Clsd `  J ) )  ->  K  e.  Haus )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {crab 2701   _Vcvv 2948    i^i cin 3311    C_ wss 3312   {csn 3806   class class class wbr 4204    e. cmpt 4258   `'ccnv 4869   "cima 4873   -onto->wfo 5444   ` cfv 5446  (class class class)co 6073    Er wer 6894   [cec 6895   /.cqs 6896   Basecbs 13461   TopOpenctopn 13641   0gc0g 13715   qTop cqtop 13721    /.s cqus 13723   Grpcgrp 14677  SubGrpcsubg 14930  NrmSGrpcnsg 14931   ~QG cqg 14932  TopOnctopon 16951   Clsdccld 17072   Hauscha 17364   TopGrpctgp 18093
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-ec 6899  df-qs 6903  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-fz 11036  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-rest 13642  df-topn 13643  df-topgen 13659  df-0g 13719  df-qtop 13725  df-imas 13726  df-divs 13727  df-mnd 14682  df-plusf 14683  df-grp 14804  df-minusg 14805  df-sbg 14806  df-subg 14933  df-nsg 14934  df-eqg 14935  df-oppg 15134  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-cn 17283  df-cnp 17284  df-t1 17370  df-haus 17371  df-tx 17586  df-hmeo 17779  df-tmd 18094  df-tgp 18095
  Copyright terms: Public domain W3C validator