Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djajN Unicode version

Theorem djajN 31774
Description: Transfer lattice join to  DVecA partial vector space closed subspace join. Part of Lemma M of [Crawley] p. 120 line 29, with closed subspace join rather than subspace sum. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaj.k  |-  .\/  =  ( join `  K )
djaj.h  |-  H  =  ( LHyp `  K
)
djaj.i  |-  I  =  ( ( DIsoA `  K
) `  W )
djaj.j  |-  J  =  ( ( vA `  K ) `  W
)
Assertion
Ref Expression
djajN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( X  .\/  Y ) )  =  ( ( I `  X ) J ( I `  Y ) ) )

Proof of Theorem djajN
StepHypRef Expression
1 hllat 30000 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
21ad2antrr 707 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  K  e.  Lat )
3 hlop 29999 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  OP )
43ad2antrr 707 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  K  e.  OP )
5 eqid 2435 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
6 djaj.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
7 djaj.i . . . . . . . . . 10  |-  I  =  ( ( DIsoA `  K
) `  W )
85, 6, 7diadmclN 31674 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  X  e.  ( Base `  K
) )
98adantrr 698 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  X  e.  (
Base `  K )
)
10 eqid 2435 . . . . . . . . 9  |-  ( oc
`  K )  =  ( oc `  K
)
115, 10opoccl 29831 . . . . . . . 8  |-  ( ( K  e.  OP  /\  X  e.  ( Base `  K ) )  -> 
( ( oc `  K ) `  X
)  e.  ( Base `  K ) )
124, 9, 11syl2anc 643 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  X )  e.  (
Base `  K )
)
135, 6lhpbase 30634 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1413ad2antlr 708 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  W  e.  (
Base `  K )
)
155, 10opoccl 29831 . . . . . . . 8  |-  ( ( K  e.  OP  /\  W  e.  ( Base `  K ) )  -> 
( ( oc `  K ) `  W
)  e.  ( Base `  K ) )
164, 14, 15syl2anc 643 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  W )  e.  (
Base `  K )
)
17 djaj.k . . . . . . . 8  |-  .\/  =  ( join `  K )
185, 17latjcl 14467 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  ( Base `  K )  /\  (
( oc `  K
) `  W )  e.  ( Base `  K
) )  ->  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) )  e.  ( Base `  K
) )
192, 12, 16, 18syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) )  e.  (
Base `  K )
)
20 eqid 2435 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
215, 20latmcl 14468 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W )  e.  ( Base `  K
) )
222, 19, 14, 21syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
) )
235, 6, 7diadmclN 31674 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  dom  I )  ->  Y  e.  ( Base `  K
) )
2423adantrl 697 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  Y  e.  (
Base `  K )
)
255, 10opoccl 29831 . . . . . . . 8  |-  ( ( K  e.  OP  /\  Y  e.  ( Base `  K ) )  -> 
( ( oc `  K ) `  Y
)  e.  ( Base `  K ) )
264, 24, 25syl2anc 643 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  Y )  e.  (
Base `  K )
)
275, 17latjcl 14467 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  Y
)  e.  ( Base `  K )  /\  (
( oc `  K
) `  W )  e.  ( Base `  K
) )  ->  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) )  e.  ( Base `  K
) )
282, 26, 16, 27syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) )  e.  (
Base `  K )
)
295, 20latmcl 14468 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W )  e.  ( Base `  K
) )
302, 28, 14, 29syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
) )
315, 20latmcl 14468 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  (
Base `  K )
)  ->  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  e.  ( Base `  K ) )
322, 22, 30, 31syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  e.  ( Base `  K
) )
33 eqid 2435 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
345, 33, 20latmle2 14494 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  (
Base `  K )
)  ->  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ( le `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )
352, 22, 30, 34syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) ( le `  K ) ( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )
365, 33, 20latmle2 14494 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) ( le `  K ) W )
372, 28, 14, 36syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( le `  K
) W )
385, 33, 2, 32, 30, 14, 35, 37lattrd 14475 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) ( le `  K ) W )
395, 33, 6, 7diaeldm 31673 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  e. 
dom  I  <->  ( (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  e.  ( Base `  K )  /\  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ( le `  K ) W ) ) )
4039adantr 452 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  e.  dom  I  <->  ( ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  e.  ( Base `  K )  /\  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ( le `  K ) W ) ) )
4132, 38, 40mpbir2and 889 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  e. 
dom  I )
42 eqid 2435 . . . 4  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
43 eqid 2435 . . . 4  |-  ( ( ocA `  K ) `
 W )  =  ( ( ocA `  K
) `  W )
4417, 20, 10, 6, 42, 7, 43diaocN 31762 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  e. 
dom  I )  -> 
( I `  (
( ( ( oc
`  K ) `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )  =  ( ( ( ocA `  K ) `
 W ) `  ( I `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) ) )
4541, 44syldan 457 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( oc `  K ) `
 ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) ) 
.\/  ( ( oc
`  K ) `  W ) ) (
meet `  K ) W ) )  =  ( ( ( ocA `  K ) `  W
) `  ( I `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) ) )
46 hloml 29994 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OML )
4746ad2antrr 707 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  K  e.  OML )
485, 17latjcl 14467 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  .\/  Y )  e.  ( Base `  K
) )
492, 9, 24, 48syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X  .\/  Y )  e.  ( Base `  K ) )
5033, 6, 7diadmleN 31675 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  X
( le `  K
) W )
5150adantrr 698 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  X ( le
`  K ) W )
5233, 6, 7diadmleN 31675 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  dom  I )  ->  Y
( le `  K
) W )
5352adantrl 697 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  Y ( le
`  K ) W )
545, 33, 17latjle12 14479 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( X ( le `  K ) W  /\  Y ( le `  K ) W )  <->  ( X  .\/  Y ) ( le
`  K ) W ) )
552, 9, 24, 14, 54syl13anc 1186 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X ( le `  K
) W  /\  Y
( le `  K
) W )  <->  ( X  .\/  Y ) ( le
`  K ) W ) )
5651, 53, 55mpbi2and 888 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X  .\/  Y ) ( le `  K ) W )
575, 33, 17, 20, 10omlspjN 29898 . . . . 5  |-  ( ( K  e.  OML  /\  ( ( X  .\/  Y )  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  ( X  .\/  Y ) ( le `  K ) W )  ->  (
( ( X  .\/  Y )  .\/  ( ( oc `  K ) `
 W ) ) ( meet `  K
) W )  =  ( X  .\/  Y
) )
5847, 49, 14, 56, 57syl121anc 1189 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( X  .\/  Y ) 
.\/  ( ( oc
`  K ) `  W ) ) (
meet `  K ) W )  =  ( X  .\/  Y ) )
595, 17latjidm 14491 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  W
)  e.  ( Base `  K ) )  -> 
( ( ( oc
`  K ) `  W )  .\/  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) )
602, 16, 59syl2anc 643 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 W )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( oc `  K
) `  W )
)
6160oveq2d 6088 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X 
.\/  Y )  .\/  ( ( ( oc
`  K ) `  W )  .\/  (
( oc `  K
) `  W )
) )  =  ( ( X  .\/  Y
)  .\/  ( ( oc `  K ) `  W ) ) )
625, 17latjass 14512 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( X  .\/  Y )  e.  ( Base `  K )  /\  (
( oc `  K
) `  W )  e.  ( Base `  K
)  /\  ( ( oc `  K ) `  W )  e.  (
Base `  K )
) )  ->  (
( ( X  .\/  Y )  .\/  ( ( oc `  K ) `
 W ) ) 
.\/  ( ( oc
`  K ) `  W ) )  =  ( ( X  .\/  Y )  .\/  ( ( ( oc `  K
) `  W )  .\/  ( ( oc `  K ) `  W
) ) ) )
632, 49, 16, 16, 62syl13anc 1186 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( X  .\/  Y ) 
.\/  ( ( oc
`  K ) `  W ) )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( X  .\/  Y
)  .\/  ( (
( oc `  K
) `  W )  .\/  ( ( oc `  K ) `  W
) ) ) )
64 hlol 29998 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  OL )
6564ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  K  e.  OL )
665, 17, 20, 10oldmm2 29855 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  ( X  .\/  Y )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( oc `  K ) `  ( ( ( oc
`  K ) `  ( X  .\/  Y ) ) ( meet `  K
) W ) )  =  ( ( X 
.\/  Y )  .\/  ( ( oc `  K ) `  W
) ) )
6765, 49, 14, 66syl3anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  ( X  .\/  Y ) ) ( meet `  K
) W ) )  =  ( ( X 
.\/  Y )  .\/  ( ( oc `  K ) `  W
) ) )
685, 17, 20, 10oldmj1 29858 . . . . . . . . . . . . . 14  |-  ( ( K  e.  OL  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( X  .\/  Y ) )  =  ( ( ( oc
`  K ) `  X ) ( meet `  K ) ( ( oc `  K ) `
 Y ) ) )
6965, 9, 24, 68syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( X  .\/  Y ) )  =  ( ( ( oc `  K
) `  X )
( meet `  K )
( ( oc `  K ) `  Y
) ) )
705, 33, 20latleeqm1 14496 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  ( X ( le `  K ) W  <->  ( X
( meet `  K ) W )  =  X ) )
712, 9, 14, 70syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X ( le `  K ) W  <->  ( X (
meet `  K ) W )  =  X ) )
7251, 71mpbid 202 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X (
meet `  K ) W )  =  X )
7372fveq2d 5723 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( X ( meet `  K
) W ) )  =  ( ( oc
`  K ) `  X ) )
745, 17, 20, 10oldmm1 29854 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  OL  /\  X  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( X
( meet `  K ) W ) )  =  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) )
7565, 9, 14, 74syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( X ( meet `  K
) W ) )  =  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) )
7673, 75eqtr3d 2469 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  X )  =  ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) )
775, 33, 20latleeqm1 14496 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Lat  /\  Y  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  ( Y ( le `  K ) W  <->  ( Y
( meet `  K ) W )  =  Y ) )
782, 24, 14, 77syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( Y ( le `  K ) W  <->  ( Y (
meet `  K ) W )  =  Y ) )
7953, 78mpbid 202 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( Y (
meet `  K ) W )  =  Y )
8079fveq2d 5723 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( Y ( meet `  K
) W ) )  =  ( ( oc
`  K ) `  Y ) )
815, 17, 20, 10oldmm1 29854 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  OL  /\  Y  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( Y
( meet `  K ) W ) )  =  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) )
8265, 24, 14, 81syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( Y ( meet `  K
) W ) )  =  ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) )
8380, 82eqtr3d 2469 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  Y )  =  ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) )
8476, 83oveq12d 6090 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 X ) (
meet `  K )
( ( oc `  K ) `  Y
) )  =  ( ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ) )
8569, 84eqtrd 2467 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( X  .\/  Y ) )  =  ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K )
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ) )
8685oveq1d 6087 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 ( X  .\/  Y ) ) ( meet `  K ) W )  =  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K )
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ) ( meet `  K ) W ) )
875, 20latmmdir 29872 . . . . . . . . . . . 12  |-  ( ( K  e.  OL  /\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) )  e.  (
Base `  K )  /\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ) (
meet `  K ) W )  =  ( ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )
8865, 19, 28, 14, 87syl13anc 1186 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K )
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ) ( meet `  K ) W )  =  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) )
8986, 88eqtrd 2467 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 ( X  .\/  Y ) ) ( meet `  K ) W )  =  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) )
9089fveq2d 5723 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  ( X  .\/  Y ) ) ( meet `  K
) W ) )  =  ( ( oc
`  K ) `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )
9167, 90eqtr3d 2469 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X 
.\/  Y )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( oc `  K
) `  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )
9291oveq1d 6087 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( X  .\/  Y ) 
.\/  ( ( oc
`  K ) `  W ) )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( ( oc `  K ) `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) )
9363, 92eqtr3d 2469 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X 
.\/  Y )  .\/  ( ( ( oc
`  K ) `  W )  .\/  (
( oc `  K
) `  W )
) )  =  ( ( ( oc `  K ) `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) )
9461, 93eqtr3d 2469 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X 
.\/  Y )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( ( oc `  K ) `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) )
9594oveq1d 6087 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( X  .\/  Y ) 
.\/  ( ( oc
`  K ) `  W ) ) (
meet `  K ) W )  =  ( ( ( ( oc
`  K ) `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )
9658, 95eqtr3d 2469 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X  .\/  Y )  =  ( ( ( ( oc `  K ) `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )
9796fveq2d 5723 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( X  .\/  Y ) )  =  ( I `
 ( ( ( ( oc `  K
) `  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) ) )
98 simpl 444 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
996, 7diaclN 31687 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  X )  e.  ran  I )
10099adantrr 698 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  X )  e.  ran  I )
1016, 42, 7diaelrnN 31682 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I `  X )  e.  ran  I )  ->  (
I `  X )  C_  ( ( LTrn `  K
) `  W )
)
102100, 101syldan 457 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  X )  C_  (
( LTrn `  K ) `  W ) )
1036, 7diaclN 31687 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  dom  I )  ->  (
I `  Y )  e.  ran  I )
104103adantrl 697 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  Y )  e.  ran  I )
1056, 42, 7diaelrnN 31682 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I `  Y )  e.  ran  I )  ->  (
I `  Y )  C_  ( ( LTrn `  K
) `  W )
)
106104, 105syldan 457 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  Y )  C_  (
( LTrn `  K ) `  W ) )
107 djaj.j . . . . 5  |-  J  =  ( ( vA `  K ) `  W
)
1086, 42, 7, 43, 107djavalN 31772 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( I `
 X )  C_  ( ( LTrn `  K
) `  W )  /\  ( I `  Y
)  C_  ( ( LTrn `  K ) `  W ) ) )  ->  ( ( I `
 X ) J ( I `  Y
) )  =  ( ( ( ocA `  K
) `  W ) `  ( ( ( ( ocA `  K ) `
 W ) `  ( I `  X
) )  i^i  (
( ( ocA `  K
) `  W ) `  ( I `  Y
) ) ) ) )
10998, 102, 106, 108syl12anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( I `
 X ) J ( I `  Y
) )  =  ( ( ( ocA `  K
) `  W ) `  ( ( ( ( ocA `  K ) `
 W ) `  ( I `  X
) )  i^i  (
( ( ocA `  K
) `  W ) `  ( I `  Y
) ) ) ) )
1105, 33, 20latmle2 14494 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) ( le `  K ) W )
1112, 19, 14, 110syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( le `  K
) W )
1125, 33, 6, 7diaeldm 31673 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I  <->  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( le
`  K ) W ) ) )
113112adantr 452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  dom  I 
<->  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( le
`  K ) W ) ) )
11422, 111, 113mpbir2and 889 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I )
1155, 33, 6, 7diaeldm 31673 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I  <->  ( (
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( le
`  K ) W ) ) )
116115adantr 452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  dom  I 
<->  ( ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( le
`  K ) W ) ) )
11730, 37, 116mpbir2and 889 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I )
11820, 6, 7diameetN 31693 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  dom  I  /\  ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I ) )  ->  ( I `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  =  ( ( I `  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )  i^i  ( I `  ( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )
11998, 114, 117, 118syl12anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  =  ( ( I `  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )  i^i  ( I `  ( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )
12017, 20, 10, 6, 42, 7, 43diaocN 31762 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  ( (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  =  ( ( ( ocA `  K ) `  W
) `  ( I `  X ) ) )
121120adantrr 698 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  =  ( ( ( ocA `  K
) `  W ) `  ( I `  X
) ) )
12217, 20, 10, 6, 42, 7, 43diaocN 31762 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  dom  I )  ->  (
I `  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  =  ( ( ( ocA `  K ) `  W
) `  ( I `  Y ) ) )
123122adantrl 697 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  =  ( ( ( ocA `  K
) `  W ) `  ( I `  Y
) ) )
124121, 123ineq12d 3535 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( I `
 ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  i^i  ( I `
 ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  =  ( ( ( ( ocA `  K ) `  W
) `  ( I `  X ) )  i^i  ( ( ( ocA `  K ) `  W
) `  ( I `  Y ) ) ) )
125119, 124eqtrd 2467 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  =  ( ( ( ( ocA `  K ) `  W
) `  ( I `  X ) )  i^i  ( ( ( ocA `  K ) `  W
) `  ( I `  Y ) ) ) )
126125fveq2d 5723 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ocA `  K ) `
 W ) `  ( I `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )  =  ( ( ( ocA `  K ) `  W
) `  ( (
( ( ocA `  K
) `  W ) `  ( I `  X
) )  i^i  (
( ( ocA `  K
) `  W ) `  ( I `  Y
) ) ) ) )
127109, 126eqtr4d 2470 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( I `
 X ) J ( I `  Y
) )  =  ( ( ( ocA `  K
) `  W ) `  ( I `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) ) )
12845, 97, 1273eqtr4d 2477 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( X  .\/  Y ) )  =  ( ( I `  X ) J ( I `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    i^i cin 3311    C_ wss 3312   class class class wbr 4204   dom cdm 4869   ran crn 4870   ` cfv 5445  (class class class)co 6072   Basecbs 13457   lecple 13524   occoc 13525   joincjn 14389   meetcmee 14390   Latclat 14462   OPcops 29809   OLcol 29811   OMLcoml 29812   HLchlt 29987   LHypclh 30620   LTrncltrn 30737   DIsoAcdia 31665   ocAcocaN 31756   vAcdjaN 31768
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-map 7011  df-poset 14391  df-plt 14403  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p0 14456  df-p1 14457  df-lat 14463  df-clat 14525  df-oposet 29813  df-cmtN 29814  df-ol 29815  df-oml 29816  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988  df-llines 30134  df-lplanes 30135  df-lvols 30136  df-lines 30137  df-psubsp 30139  df-pmap 30140  df-padd 30432  df-lhyp 30624  df-laut 30625  df-ldil 30740  df-ltrn 30741  df-trl 30795  df-disoa 31666  df-docaN 31757  df-djaN 31769
  Copyright terms: Public domain W3C validator