Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djajN Unicode version

Theorem djajN 30494
Description: Transfer lattice join to  DVecA partial vector space closed subspace join. Part of Lemma M of [Crawley] p. 120 line 29, with closed subspace join rather than subspace sum. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaj.k  |-  .\/  =  ( join `  K )
djaj.h  |-  H  =  ( LHyp `  K
)
djaj.i  |-  I  =  ( ( DIsoA `  K
) `  W )
djaj.j  |-  J  =  ( ( vA `  K ) `  W
)
Assertion
Ref Expression
djajN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( X  .\/  Y ) )  =  ( ( I `  X ) J ( I `  Y ) ) )

Proof of Theorem djajN
StepHypRef Expression
1 hllat 28720 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
21ad2antrr 709 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  K  e.  Lat )
3 hlop 28719 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  OP )
43ad2antrr 709 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  K  e.  OP )
5 eqid 2258 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
6 djaj.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
7 djaj.i . . . . . . . . . 10  |-  I  =  ( ( DIsoA `  K
) `  W )
85, 6, 7diadmclN 30394 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  X  e.  ( Base `  K
) )
98adantrr 700 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  X  e.  (
Base `  K )
)
10 eqid 2258 . . . . . . . . 9  |-  ( oc
`  K )  =  ( oc `  K
)
115, 10opoccl 28551 . . . . . . . 8  |-  ( ( K  e.  OP  /\  X  e.  ( Base `  K ) )  -> 
( ( oc `  K ) `  X
)  e.  ( Base `  K ) )
124, 9, 11syl2anc 645 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  X )  e.  (
Base `  K )
)
135, 6lhpbase 29354 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1413ad2antlr 710 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  W  e.  (
Base `  K )
)
155, 10opoccl 28551 . . . . . . . 8  |-  ( ( K  e.  OP  /\  W  e.  ( Base `  K ) )  -> 
( ( oc `  K ) `  W
)  e.  ( Base `  K ) )
164, 14, 15syl2anc 645 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  W )  e.  (
Base `  K )
)
17 djaj.k . . . . . . . 8  |-  .\/  =  ( join `  K )
185, 17latjcl 14118 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  ( Base `  K )  /\  (
( oc `  K
) `  W )  e.  ( Base `  K
) )  ->  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) )  e.  ( Base `  K
) )
192, 12, 16, 18syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) )  e.  (
Base `  K )
)
20 eqid 2258 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
215, 20latmcl 14119 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W )  e.  ( Base `  K
) )
222, 19, 14, 21syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
) )
235, 6, 7diadmclN 30394 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  dom  I )  ->  Y  e.  ( Base `  K
) )
2423adantrl 699 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  Y  e.  (
Base `  K )
)
255, 10opoccl 28551 . . . . . . . 8  |-  ( ( K  e.  OP  /\  Y  e.  ( Base `  K ) )  -> 
( ( oc `  K ) `  Y
)  e.  ( Base `  K ) )
264, 24, 25syl2anc 645 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  Y )  e.  (
Base `  K )
)
275, 17latjcl 14118 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  Y
)  e.  ( Base `  K )  /\  (
( oc `  K
) `  W )  e.  ( Base `  K
) )  ->  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) )  e.  ( Base `  K
) )
282, 26, 16, 27syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) )  e.  (
Base `  K )
)
295, 20latmcl 14119 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W )  e.  ( Base `  K
) )
302, 28, 14, 29syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
) )
315, 20latmcl 14119 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  (
Base `  K )
)  ->  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  e.  ( Base `  K ) )
322, 22, 30, 31syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  e.  ( Base `  K
) )
33 eqid 2258 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
345, 33, 20latmle2 14145 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  (
Base `  K )
)  ->  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ( le `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )
352, 22, 30, 34syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) ( le `  K ) ( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )
365, 33, 20latmle2 14145 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) ( le `  K ) W )
372, 28, 14, 36syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( le `  K
) W )
385, 33, 2, 32, 30, 14, 35, 37lattrd 14126 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) ( le `  K ) W )
395, 33, 6, 7diaeldm 30393 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  e. 
dom  I  <->  ( (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  e.  ( Base `  K )  /\  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ( le `  K ) W ) ) )
4039adantr 453 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  e.  dom  I  <->  ( ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  e.  ( Base `  K )  /\  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ( le `  K ) W ) ) )
4132, 38, 40mpbir2and 893 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  e. 
dom  I )
42 eqid 2258 . . . 4  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
43 eqid 2258 . . . 4  |-  ( ( ocA `  K ) `
 W )  =  ( ( ocA `  K
) `  W )
4417, 20, 10, 6, 42, 7, 43diaocN 30482 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  e. 
dom  I )  -> 
( I `  (
( ( ( oc
`  K ) `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )  =  ( ( ( ocA `  K ) `
 W ) `  ( I `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) ) )
4541, 44syldan 458 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( oc `  K ) `
 ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) ) 
.\/  ( ( oc
`  K ) `  W ) ) (
meet `  K ) W ) )  =  ( ( ( ocA `  K ) `  W
) `  ( I `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) ) )
46 hloml 28714 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OML )
4746ad2antrr 709 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  K  e.  OML )
485, 17latjcl 14118 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  .\/  Y )  e.  ( Base `  K
) )
492, 9, 24, 48syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X  .\/  Y )  e.  ( Base `  K ) )
5033, 6, 7diadmleN 30395 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  X
( le `  K
) W )
5150adantrr 700 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  X ( le
`  K ) W )
5233, 6, 7diadmleN 30395 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  dom  I )  ->  Y
( le `  K
) W )
5352adantrl 699 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  Y ( le
`  K ) W )
545, 33, 17latjle12 14130 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( X ( le `  K ) W  /\  Y ( le `  K ) W )  <->  ( X  .\/  Y ) ( le
`  K ) W ) )
552, 9, 24, 14, 54syl13anc 1189 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X ( le `  K
) W  /\  Y
( le `  K
) W )  <->  ( X  .\/  Y ) ( le
`  K ) W ) )
5651, 53, 55mpbi2and 892 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X  .\/  Y ) ( le `  K ) W )
575, 33, 17, 20, 10omlspjN 28618 . . . . 5  |-  ( ( K  e.  OML  /\  ( ( X  .\/  Y )  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  ( X  .\/  Y ) ( le `  K ) W )  ->  (
( ( X  .\/  Y )  .\/  ( ( oc `  K ) `
 W ) ) ( meet `  K
) W )  =  ( X  .\/  Y
) )
5847, 49, 14, 56, 57syl121anc 1192 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( X  .\/  Y ) 
.\/  ( ( oc
`  K ) `  W ) ) (
meet `  K ) W )  =  ( X  .\/  Y ) )
595, 17latjidm 14142 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  W
)  e.  ( Base `  K ) )  -> 
( ( ( oc
`  K ) `  W )  .\/  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) )
602, 16, 59syl2anc 645 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 W )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( oc `  K
) `  W )
)
6160oveq2d 5808 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X 
.\/  Y )  .\/  ( ( ( oc
`  K ) `  W )  .\/  (
( oc `  K
) `  W )
) )  =  ( ( X  .\/  Y
)  .\/  ( ( oc `  K ) `  W ) ) )
625, 17latjass 14163 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( X  .\/  Y )  e.  ( Base `  K )  /\  (
( oc `  K
) `  W )  e.  ( Base `  K
)  /\  ( ( oc `  K ) `  W )  e.  (
Base `  K )
) )  ->  (
( ( X  .\/  Y )  .\/  ( ( oc `  K ) `
 W ) ) 
.\/  ( ( oc
`  K ) `  W ) )  =  ( ( X  .\/  Y )  .\/  ( ( ( oc `  K
) `  W )  .\/  ( ( oc `  K ) `  W
) ) ) )
632, 49, 16, 16, 62syl13anc 1189 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( X  .\/  Y ) 
.\/  ( ( oc
`  K ) `  W ) )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( X  .\/  Y
)  .\/  ( (
( oc `  K
) `  W )  .\/  ( ( oc `  K ) `  W
) ) ) )
64 hlol 28718 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  OL )
6564ad2antrr 709 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  K  e.  OL )
665, 17, 20, 10oldmm2 28575 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  ( X  .\/  Y )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( oc `  K ) `  ( ( ( oc
`  K ) `  ( X  .\/  Y ) ) ( meet `  K
) W ) )  =  ( ( X 
.\/  Y )  .\/  ( ( oc `  K ) `  W
) ) )
6765, 49, 14, 66syl3anc 1187 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  ( X  .\/  Y ) ) ( meet `  K
) W ) )  =  ( ( X 
.\/  Y )  .\/  ( ( oc `  K ) `  W
) ) )
685, 17, 20, 10oldmj1 28578 . . . . . . . . . . . . . 14  |-  ( ( K  e.  OL  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( X  .\/  Y ) )  =  ( ( ( oc
`  K ) `  X ) ( meet `  K ) ( ( oc `  K ) `
 Y ) ) )
6965, 9, 24, 68syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( X  .\/  Y ) )  =  ( ( ( oc `  K
) `  X )
( meet `  K )
( ( oc `  K ) `  Y
) ) )
705, 33, 20latleeqm1 14147 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  ( X ( le `  K ) W  <->  ( X
( meet `  K ) W )  =  X ) )
712, 9, 14, 70syl3anc 1187 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X ( le `  K ) W  <->  ( X (
meet `  K ) W )  =  X ) )
7251, 71mpbid 203 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X (
meet `  K ) W )  =  X )
7372fveq2d 5462 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( X ( meet `  K
) W ) )  =  ( ( oc
`  K ) `  X ) )
745, 17, 20, 10oldmm1 28574 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  OL  /\  X  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( X
( meet `  K ) W ) )  =  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) )
7565, 9, 14, 74syl3anc 1187 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( X ( meet `  K
) W ) )  =  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) )
7673, 75eqtr3d 2292 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  X )  =  ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) )
775, 33, 20latleeqm1 14147 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Lat  /\  Y  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  ( Y ( le `  K ) W  <->  ( Y
( meet `  K ) W )  =  Y ) )
782, 24, 14, 77syl3anc 1187 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( Y ( le `  K ) W  <->  ( Y (
meet `  K ) W )  =  Y ) )
7953, 78mpbid 203 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( Y (
meet `  K ) W )  =  Y )
8079fveq2d 5462 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( Y ( meet `  K
) W ) )  =  ( ( oc
`  K ) `  Y ) )
815, 17, 20, 10oldmm1 28574 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  OL  /\  Y  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( Y
( meet `  K ) W ) )  =  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) )
8265, 24, 14, 81syl3anc 1187 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( Y ( meet `  K
) W ) )  =  ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) )
8380, 82eqtr3d 2292 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  Y )  =  ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) )
8476, 83oveq12d 5810 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 X ) (
meet `  K )
( ( oc `  K ) `  Y
) )  =  ( ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ) )
8569, 84eqtrd 2290 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( X  .\/  Y ) )  =  ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K )
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ) )
8685oveq1d 5807 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 ( X  .\/  Y ) ) ( meet `  K ) W )  =  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K )
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ) ( meet `  K ) W ) )
875, 20latmmdir 28592 . . . . . . . . . . . 12  |-  ( ( K  e.  OL  /\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) )  e.  (
Base `  K )  /\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ) (
meet `  K ) W )  =  ( ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )
8865, 19, 28, 14, 87syl13anc 1189 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K )
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ) ( meet `  K ) W )  =  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) )
8986, 88eqtrd 2290 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 ( X  .\/  Y ) ) ( meet `  K ) W )  =  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) )
9089fveq2d 5462 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  ( X  .\/  Y ) ) ( meet `  K
) W ) )  =  ( ( oc
`  K ) `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )
9167, 90eqtr3d 2292 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X 
.\/  Y )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( oc `  K
) `  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )
9291oveq1d 5807 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( X  .\/  Y ) 
.\/  ( ( oc
`  K ) `  W ) )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( ( oc `  K ) `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) )
9363, 92eqtr3d 2292 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X 
.\/  Y )  .\/  ( ( ( oc
`  K ) `  W )  .\/  (
( oc `  K
) `  W )
) )  =  ( ( ( oc `  K ) `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) )
9461, 93eqtr3d 2292 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X 
.\/  Y )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( ( oc `  K ) `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) )
9594oveq1d 5807 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( X  .\/  Y ) 
.\/  ( ( oc
`  K ) `  W ) ) (
meet `  K ) W )  =  ( ( ( ( oc
`  K ) `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )
9658, 95eqtr3d 2292 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X  .\/  Y )  =  ( ( ( ( oc `  K ) `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )
9796fveq2d 5462 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( X  .\/  Y ) )  =  ( I `
 ( ( ( ( oc `  K
) `  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) ) )
98 simpl 445 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
996, 7diaclN 30407 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  X )  e.  ran  I )
10099adantrr 700 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  X )  e.  ran  I )
1016, 42, 7diaelrnN 30402 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I `  X )  e.  ran  I )  ->  (
I `  X )  C_  ( ( LTrn `  K
) `  W )
)
102100, 101syldan 458 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  X )  C_  (
( LTrn `  K ) `  W ) )
1036, 7diaclN 30407 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  dom  I )  ->  (
I `  Y )  e.  ran  I )
104103adantrl 699 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  Y )  e.  ran  I )
1056, 42, 7diaelrnN 30402 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I `  Y )  e.  ran  I )  ->  (
I `  Y )  C_  ( ( LTrn `  K
) `  W )
)
106104, 105syldan 458 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  Y )  C_  (
( LTrn `  K ) `  W ) )
107 djaj.j . . . . 5  |-  J  =  ( ( vA `  K ) `  W
)
1086, 42, 7, 43, 107djavalN 30492 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( I `
 X )  C_  ( ( LTrn `  K
) `  W )  /\  ( I `  Y
)  C_  ( ( LTrn `  K ) `  W ) ) )  ->  ( ( I `
 X ) J ( I `  Y
) )  =  ( ( ( ocA `  K
) `  W ) `  ( ( ( ( ocA `  K ) `
 W ) `  ( I `  X
) )  i^i  (
( ( ocA `  K
) `  W ) `  ( I `  Y
) ) ) ) )
10998, 102, 106, 108syl12anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( I `
 X ) J ( I `  Y
) )  =  ( ( ( ocA `  K
) `  W ) `  ( ( ( ( ocA `  K ) `
 W ) `  ( I `  X
) )  i^i  (
( ( ocA `  K
) `  W ) `  ( I `  Y
) ) ) ) )
1105, 33, 20latmle2 14145 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) ( le `  K ) W )
1112, 19, 14, 110syl3anc 1187 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( le `  K
) W )
1125, 33, 6, 7diaeldm 30393 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I  <->  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( le
`  K ) W ) ) )
113112adantr 453 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  dom  I 
<->  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( le
`  K ) W ) ) )
11422, 111, 113mpbir2and 893 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I )
1155, 33, 6, 7diaeldm 30393 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I  <->  ( (
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( le
`  K ) W ) ) )
116115adantr 453 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  dom  I 
<->  ( ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( le
`  K ) W ) ) )
11730, 37, 116mpbir2and 893 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I )
11820, 6, 7diameetN 30413 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  dom  I  /\  ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I ) )  ->  ( I `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  =  ( ( I `  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )  i^i  ( I `  ( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )
11998, 114, 117, 118syl12anc 1185 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  =  ( ( I `  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )  i^i  ( I `  ( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )
12017, 20, 10, 6, 42, 7, 43diaocN 30482 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  ( (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  =  ( ( ( ocA `  K ) `  W
) `  ( I `  X ) ) )
121120adantrr 700 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  =  ( ( ( ocA `  K
) `  W ) `  ( I `  X
) ) )
12217, 20, 10, 6, 42, 7, 43diaocN 30482 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  dom  I )  ->  (
I `  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  =  ( ( ( ocA `  K ) `  W
) `  ( I `  Y ) ) )
123122adantrl 699 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  =  ( ( ( ocA `  K
) `  W ) `  ( I `  Y
) ) )
124121, 123ineq12d 3346 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( I `
 ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  i^i  ( I `
 ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  =  ( ( ( ( ocA `  K ) `  W
) `  ( I `  X ) )  i^i  ( ( ( ocA `  K ) `  W
) `  ( I `  Y ) ) ) )
125119, 124eqtrd 2290 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  =  ( ( ( ( ocA `  K ) `  W
) `  ( I `  X ) )  i^i  ( ( ( ocA `  K ) `  W
) `  ( I `  Y ) ) ) )
126125fveq2d 5462 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ocA `  K ) `
 W ) `  ( I `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )  =  ( ( ( ocA `  K ) `  W
) `  ( (
( ( ocA `  K
) `  W ) `  ( I `  X
) )  i^i  (
( ( ocA `  K
) `  W ) `  ( I `  Y
) ) ) ) )
127109, 126eqtr4d 2293 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( I `
 X ) J ( I `  Y
) )  =  ( ( ( ocA `  K
) `  W ) `  ( I `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) ) )
12845, 97, 1273eqtr4d 2300 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( X  .\/  Y ) )  =  ( ( I `  X ) J ( I `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    i^i cin 3126    C_ wss 3127   class class class wbr 3997   dom cdm 4661   ran crn 4662   ` cfv 4673  (class class class)co 5792   Basecbs 13110   lecple 13177   occoc 13178   joincjn 14040   meetcmee 14041   Latclat 14113   OPcops 28529   OLcol 28531   OMLcoml 28532   HLchlt 28707   LHypclh 29340   LTrncltrn 29457   DIsoAcdia 30385   ocAcocaN 30476   vAcdjaN 30488
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-map 6742  df-poset 14042  df-plt 14054  df-lub 14070  df-glb 14071  df-join 14072  df-meet 14073  df-p0 14107  df-p1 14108  df-lat 14114  df-clat 14176  df-oposet 28533  df-cmtN 28534  df-ol 28535  df-oml 28536  df-covers 28623  df-ats 28624  df-atl 28655  df-cvlat 28679  df-hlat 28708  df-llines 28854  df-lplanes 28855  df-lvols 28856  df-lines 28857  df-psubsp 28859  df-pmap 28860  df-padd 29152  df-lhyp 29344  df-laut 29345  df-ldil 29460  df-ltrn 29461  df-trl 29515  df-disoa 30386  df-docaN 30477  df-djaN 30489
  Copyright terms: Public domain W3C validator