MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaddsr Unicode version

Theorem dmaddsr 8709
Description: Domain of addition on signed reals. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmaddsr  |-  dom  +R  =  ( R.  X.  R. )

Proof of Theorem dmaddsr
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plr 8685 . . . 4  |-  +R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [
( <. w ,  v
>.  +pR  <. u ,  f
>. ) ]  ~R  )
) }
21dmeqi 4882 . . 3  |-  dom  +R  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ ( <. w ,  v >.  +pR  <. u ,  f
>. ) ]  ~R  )
) }
3 dmoprabss 5931 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [
( <. w ,  v
>.  +pR  <. u ,  f
>. ) ]  ~R  )
) }  C_  ( R.  X.  R. )
42, 3eqsstri 3210 . 2  |-  dom  +R  C_  ( R.  X.  R. )
5 0nsr 8703 . . 3  |-  -.  (/)  e.  R.
6 addclsr 8707 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( x  +R  y
)  e.  R. )
75, 6oprssdm 6004 . 2  |-  ( R. 
X.  R. )  C_  dom  +R
84, 7eqssi 3197 1  |-  dom  +R  =  ( R.  X.  R. )
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1530    = wceq 1625    e. wcel 1686   <.cop 3645    X. cxp 4689   dom cdm 4691  (class class class)co 5860   {coprab 5861   [cec 6660    +pR cplpr 8488    ~R cer 8490   R.cnr 8491    +R cplr 8495
This theorem is referenced by:  addcomsr  8711  addasssr  8712  distrsr  8715  ltasr  8724
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-omul 6486  df-er 6662  df-ec 6664  df-qs 6668  df-ni 8498  df-pli 8499  df-mi 8500  df-lti 8501  df-plpq 8534  df-mpq 8535  df-ltpq 8536  df-enq 8537  df-nq 8538  df-erq 8539  df-plq 8540  df-mq 8541  df-1nq 8542  df-rq 8543  df-ltnq 8544  df-np 8607  df-plp 8609  df-ltp 8611  df-plpr 8681  df-enr 8683  df-nr 8684  df-plr 8685
  Copyright terms: Public domain W3C validator