HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdsl3 Unicode version

Theorem dmdsl3 22855
Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdsl3  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C  /\  C  C_  ( A  vH  B ) ) )  ->  ( ( C  i^i  B )  vH  A )  =  C )

Proof of Theorem dmdsl3
StepHypRef Expression
1 dmdi 22842 . . . . . 6  |-  ( ( ( B  e.  CH  /\  A  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C ) )  ->  ( ( C  i^i  B )  vH  A )  =  ( C  i^i  ( B  vH  A ) ) )
21exp32 591 . . . . 5  |-  ( ( B  e.  CH  /\  A  e.  CH  /\  C  e.  CH )  ->  ( B  MH*  A  ->  ( A  C_  C  ->  (
( C  i^i  B
)  vH  A )  =  ( C  i^i  ( B  vH  A ) ) ) ) )
323com12 1160 . . . 4  |-  ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  ->  ( B  MH*  A  ->  ( A  C_  C  ->  (
( C  i^i  B
)  vH  A )  =  ( C  i^i  ( B  vH  A ) ) ) ) )
43imp32 424 . . 3  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C ) )  ->  ( ( C  i^i  B )  vH  A )  =  ( C  i^i  ( B  vH  A ) ) )
543adantr3 1121 . 2  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C  /\  C  C_  ( A  vH  B ) ) )  ->  ( ( C  i^i  B )  vH  A )  =  ( C  i^i  ( B  vH  A ) ) )
6 chjcom 22045 . . . . . 6  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  vH  B
)  =  ( B  vH  A ) )
76ineq2d 3345 . . . . 5  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( C  i^i  ( A  vH  B ) )  =  ( C  i^i  ( B  vH  A ) ) )
873adant3 980 . . . 4  |-  ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  ->  ( C  i^i  ( A  vH  B ) )  =  ( C  i^i  ( B  vH  A ) ) )
9 df-ss 3141 . . . . 5  |-  ( C 
C_  ( A  vH  B )  <->  ( C  i^i  ( A  vH  B
) )  =  C )
109biimpi 188 . . . 4  |-  ( C 
C_  ( A  vH  B )  ->  ( C  i^i  ( A  vH  B ) )  =  C )
118, 10sylan9req 2311 . . 3  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  C  C_  ( A  vH  B ) )  ->  ( C  i^i  ( B  vH  A ) )  =  C )
12113ad2antr3 1127 . 2  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C  /\  C  C_  ( A  vH  B ) ) )  ->  ( C  i^i  ( B  vH  A ) )  =  C )
135, 12eqtrd 2290 1  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C  /\  C  C_  ( A  vH  B ) ) )  ->  ( ( C  i^i  B )  vH  A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    i^i cin 3126    C_ wss 3127   class class class wbr 3997  (class class class)co 5792   CHcch 21469    vH chj 21473    MH* cdmd 21507
This theorem is referenced by:  mdslle1i  22857  mdslj1i  22859  mdslj2i  22860  mdslmd1lem1  22865
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484  ax-hilex 21539
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-sh 21746  df-ch 21761  df-chj 21849  df-dmd 22821
  Copyright terms: Public domain W3C validator