HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdsl3 Unicode version

Theorem dmdsl3 23806
Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdsl3  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C  /\  C  C_  ( A  vH  B ) ) )  ->  ( ( C  i^i  B )  vH  A )  =  C )

Proof of Theorem dmdsl3
StepHypRef Expression
1 dmdi 23793 . . . . . 6  |-  ( ( ( B  e.  CH  /\  A  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C ) )  ->  ( ( C  i^i  B )  vH  A )  =  ( C  i^i  ( B  vH  A ) ) )
21exp32 589 . . . . 5  |-  ( ( B  e.  CH  /\  A  e.  CH  /\  C  e.  CH )  ->  ( B  MH*  A  ->  ( A  C_  C  ->  (
( C  i^i  B
)  vH  A )  =  ( C  i^i  ( B  vH  A ) ) ) ) )
323com12 1157 . . . 4  |-  ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  ->  ( B  MH*  A  ->  ( A  C_  C  ->  (
( C  i^i  B
)  vH  A )  =  ( C  i^i  ( B  vH  A ) ) ) ) )
43imp32 423 . . 3  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C ) )  ->  ( ( C  i^i  B )  vH  A )  =  ( C  i^i  ( B  vH  A ) ) )
543adantr3 1118 . 2  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C  /\  C  C_  ( A  vH  B ) ) )  ->  ( ( C  i^i  B )  vH  A )  =  ( C  i^i  ( B  vH  A ) ) )
6 chjcom 22996 . . . . . 6  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  vH  B
)  =  ( B  vH  A ) )
76ineq2d 3534 . . . . 5  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( C  i^i  ( A  vH  B ) )  =  ( C  i^i  ( B  vH  A ) ) )
873adant3 977 . . . 4  |-  ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  ->  ( C  i^i  ( A  vH  B ) )  =  ( C  i^i  ( B  vH  A ) ) )
9 df-ss 3326 . . . . 5  |-  ( C 
C_  ( A  vH  B )  <->  ( C  i^i  ( A  vH  B
) )  =  C )
109biimpi 187 . . . 4  |-  ( C 
C_  ( A  vH  B )  ->  ( C  i^i  ( A  vH  B ) )  =  C )
118, 10sylan9req 2488 . . 3  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  C  C_  ( A  vH  B ) )  ->  ( C  i^i  ( B  vH  A ) )  =  C )
12113ad2antr3 1124 . 2  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C  /\  C  C_  ( A  vH  B ) ) )  ->  ( C  i^i  ( B  vH  A ) )  =  C )
135, 12eqtrd 2467 1  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C  /\  C  C_  ( A  vH  B ) ) )  ->  ( ( C  i^i  B )  vH  A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    i^i cin 3311    C_ wss 3312   class class class wbr 4204  (class class class)co 6072   CHcch 22420    vH chj 22424    MH* cdmd 22458
This theorem is referenced by:  mdslle1i  23808  mdslj1i  23810  mdslj2i  23811  mdslmd1lem1  23816
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-hilex 22490
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-sh 22697  df-ch 22712  df-chj 22800  df-dmd 23772
  Copyright terms: Public domain W3C validator