HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdsl3 Unicode version

Theorem dmdsl3 22725
Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdsl3  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C  /\  C  C_  ( A  vH  B ) ) )  ->  ( ( C  i^i  B )  vH  A )  =  C )

Proof of Theorem dmdsl3
StepHypRef Expression
1 dmdi 22712 . . . . . 6  |-  ( ( ( B  e.  CH  /\  A  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C ) )  ->  ( ( C  i^i  B )  vH  A )  =  ( C  i^i  ( B  vH  A ) ) )
21exp32 591 . . . . 5  |-  ( ( B  e.  CH  /\  A  e.  CH  /\  C  e.  CH )  ->  ( B  MH*  A  ->  ( A  C_  C  ->  (
( C  i^i  B
)  vH  A )  =  ( C  i^i  ( B  vH  A ) ) ) ) )
323com12 1160 . . . 4  |-  ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  ->  ( B  MH*  A  ->  ( A  C_  C  ->  (
( C  i^i  B
)  vH  A )  =  ( C  i^i  ( B  vH  A ) ) ) ) )
43imp32 424 . . 3  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C ) )  ->  ( ( C  i^i  B )  vH  A )  =  ( C  i^i  ( B  vH  A ) ) )
543adantr3 1121 . 2  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C  /\  C  C_  ( A  vH  B ) ) )  ->  ( ( C  i^i  B )  vH  A )  =  ( C  i^i  ( B  vH  A ) ) )
6 chjcom 21915 . . . . . 6  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  vH  B
)  =  ( B  vH  A ) )
76ineq2d 3278 . . . . 5  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( C  i^i  ( A  vH  B ) )  =  ( C  i^i  ( B  vH  A ) ) )
873adant3 980 . . . 4  |-  ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  ->  ( C  i^i  ( A  vH  B ) )  =  ( C  i^i  ( B  vH  A ) ) )
9 df-ss 3089 . . . . 5  |-  ( C 
C_  ( A  vH  B )  <->  ( C  i^i  ( A  vH  B
) )  =  C )
109biimpi 188 . . . 4  |-  ( C 
C_  ( A  vH  B )  ->  ( C  i^i  ( A  vH  B ) )  =  C )
118, 10sylan9req 2306 . . 3  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  C  C_  ( A  vH  B ) )  ->  ( C  i^i  ( B  vH  A ) )  =  C )
12113ad2antr3 1127 . 2  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C  /\  C  C_  ( A  vH  B ) ) )  ->  ( C  i^i  ( B  vH  A ) )  =  C )
135, 12eqtrd 2285 1  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( B  MH*  A  /\  A  C_  C  /\  C  C_  ( A  vH  B ) ) )  ->  ( ( C  i^i  B )  vH  A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    i^i cin 3077    C_ wss 3078   class class class wbr 3920  (class class class)co 5710   CHcch 21339    vH chj 21343    MH* cdmd 21377
This theorem is referenced by:  mdslle1i  22727  mdslj1i  22729  mdslj2i  22730  mdslmd1lem1  22735
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403  ax-hilex 21409
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-sh 21616  df-ch 21631  df-chj 21719  df-dmd 22691
  Copyright terms: Public domain W3C validator