MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmin Unicode version

Theorem dmin 4874
Description: The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
dmin  |-  dom  (  A  i^i  B )  C_  ( dom  A  i^i  dom  B )

Proof of Theorem dmin
StepHypRef Expression
1 19.40 1608 . . 3  |-  ( E. y ( <. x ,  y >.  e.  A  /\  <. x ,  y
>.  e.  B )  -> 
( E. y <.
x ,  y >.  e.  A  /\  E. y <. x ,  y >.  e.  B ) )
2 vex 2766 . . . . 5  |-  x  e. 
_V
32eldm2 4865 . . . 4  |-  ( x  e.  dom  (  A  i^i  B )  <->  E. y <. x ,  y >.  e.  ( A  i^i  B
) )
4 elin 3333 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  i^i  B
)  <->  ( <. x ,  y >.  e.  A  /\  <. x ,  y
>.  e.  B ) )
54exbii 1580 . . . 4  |-  ( E. y <. x ,  y
>.  e.  ( A  i^i  B )  <->  E. y ( <.
x ,  y >.  e.  A  /\  <. x ,  y >.  e.  B
) )
63, 5bitri 242 . . 3  |-  ( x  e.  dom  (  A  i^i  B )  <->  E. y
( <. x ,  y
>.  e.  A  /\  <. x ,  y >.  e.  B
) )
7 elin 3333 . . . 4  |-  ( x  e.  ( dom  A  i^i  dom  B )  <->  ( x  e.  dom  A  /\  x  e.  dom  B ) )
82eldm2 4865 . . . . 5  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
92eldm2 4865 . . . . 5  |-  ( x  e.  dom  B  <->  E. y <. x ,  y >.  e.  B )
108, 9anbi12i 681 . . . 4  |-  ( ( x  e.  dom  A  /\  x  e.  dom  B )  <->  ( E. y <. x ,  y >.  e.  A  /\  E. y <. x ,  y >.  e.  B ) )
117, 10bitri 242 . . 3  |-  ( x  e.  ( dom  A  i^i  dom  B )  <->  ( E. y <. x ,  y
>.  e.  A  /\  E. y <. x ,  y
>.  e.  B ) )
121, 6, 113imtr4i 259 . 2  |-  ( x  e.  dom  (  A  i^i  B )  ->  x  e.  ( dom  A  i^i  dom  B )
)
1312ssriv 3159 1  |-  dom  (  A  i^i  B )  C_  ( dom  A  i^i  dom  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 360   E.wex 1537    e. wcel 1621    i^i cin 3126    C_ wss 3127   <.cop 3617   dom cdm 4661
This theorem is referenced by:  rnin  5078  psssdm2  14286  domintrefb  24429
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-rab 2527  df-v 2765  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-br 3998  df-dm 4679
  Copyright terms: Public domain W3C validator