MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmpropg Unicode version

Theorem dmpropg 5302
Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmpropg  |-  ( ( B  e.  V  /\  D  e.  W )  ->  dom  { <. A ,  B >. ,  <. C ,  D >. }  =  { A ,  C }
)

Proof of Theorem dmpropg
StepHypRef Expression
1 dmsnopg 5300 . . 3  |-  ( B  e.  V  ->  dom  {
<. A ,  B >. }  =  { A }
)
2 dmsnopg 5300 . . 3  |-  ( D  e.  W  ->  dom  {
<. C ,  D >. }  =  { C }
)
3 uneq12 3456 . . 3  |-  ( ( dom  { <. A ,  B >. }  =  { A }  /\  dom  { <. C ,  D >. }  =  { C }
)  ->  ( dom  {
<. A ,  B >. }  u.  dom  { <. C ,  D >. } )  =  ( { A }  u.  { C } ) )
41, 2, 3syl2an 464 . 2  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ( dom  { <. A ,  B >. }  u.  dom  { <. C ,  D >. } )  =  ( { A }  u.  { C } ) )
5 df-pr 3781 . . . 4  |-  { <. A ,  B >. ,  <. C ,  D >. }  =  ( { <. A ,  B >. }  u.  { <. C ,  D >. } )
65dmeqi 5030 . . 3  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  dom  ( {
<. A ,  B >. }  u.  { <. C ,  D >. } )
7 dmun 5035 . . 3  |-  dom  ( { <. A ,  B >. }  u.  { <. C ,  D >. } )  =  ( dom  { <. A ,  B >. }  u.  dom  { <. C ,  D >. } )
86, 7eqtri 2424 . 2  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  ( dom  { <. A ,  B >. }  u.  dom  { <. C ,  D >. } )
9 df-pr 3781 . 2  |-  { A ,  C }  =  ( { A }  u.  { C } )
104, 8, 93eqtr4g 2461 1  |-  ( ( B  e.  V  /\  D  e.  W )  ->  dom  { <. A ,  B >. ,  <. C ,  D >. }  =  { A ,  C }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    u. cun 3278   {csn 3774   {cpr 3775   <.cop 3777   dom cdm 4837
This theorem is referenced by:  dmprop  5304  funtpg  5460  fnprg  5464  s4dom  11821
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-dm 4847
  Copyright terms: Public domain W3C validator