MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmrecnq Unicode version

Theorem dmrecnq 8587
Description: Domain of reciprocal on positive fractions. (Contributed by Mario Carneiro, 6-Mar-1996.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
dmrecnq  |-  dom  *Q  =  Q.

Proof of Theorem dmrecnq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-rq 8536 . . . . . 6  |-  *Q  =  ( `'  .Q  " { 1Q } )
2 cnvimass 5031 . . . . . 6  |-  ( `'  .Q  " { 1Q } )  C_  dom  .Q
31, 2eqsstri 3208 . . . . 5  |-  *Q  C_  dom  .Q
4 mulnqf 8568 . . . . . 6  |-  .Q  :
( Q.  X.  Q. )
--> Q.
54fdmi 5359 . . . . 5  |-  dom  .Q  =  ( Q.  X.  Q. )
63, 5sseqtri 3210 . . . 4  |-  *Q  C_  ( Q.  X.  Q. )
7 dmss 4876 . . . 4  |-  ( *Q  C_  ( Q.  X.  Q. )  ->  dom  *Q  C_  dom  ( Q.  X.  Q. )
)
86, 7ax-mp 8 . . 3  |-  dom  *Q  C_ 
dom  ( Q.  X.  Q. )
9 dmxpid 4896 . . 3  |-  dom  ( Q.  X.  Q. )  =  Q.
108, 9sseqtri 3210 . 2  |-  dom  *Q  C_ 
Q.
11 recclnq 8585 . . . . . . . 8  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
12 opelxpi 4719 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  ( *Q `  x )  e.  Q. )  ->  <. x ,  ( *Q
`  x ) >.  e.  ( Q.  X.  Q. ) )
1311, 12mpdan 649 . . . . . . 7  |-  ( x  e.  Q.  ->  <. x ,  ( *Q `  x ) >.  e.  ( Q.  X.  Q. )
)
14 df-ov 5822 . . . . . . . 8  |-  ( x  .Q  ( *Q `  x ) )  =  (  .Q  `  <. x ,  ( *Q `  x ) >. )
15 recidnq 8584 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
x  .Q  ( *Q
`  x ) )  =  1Q )
1614, 15syl5eqr 2329 . . . . . . 7  |-  ( x  e.  Q.  ->  (  .Q  `  <. x ,  ( *Q `  x )
>. )  =  1Q )
17 ffn 5354 . . . . . . . 8  |-  (  .Q  : ( Q.  X.  Q. ) --> Q.  ->  .Q  Fn  ( Q.  X.  Q. )
)
18 fniniseg 5607 . . . . . . . 8  |-  (  .Q  Fn  ( Q.  X.  Q. )  ->  ( <.
x ,  ( *Q
`  x ) >.  e.  ( `'  .Q  " { 1Q } )  <->  ( <. x ,  ( *Q `  x ) >.  e.  ( Q.  X.  Q. )  /\  (  .Q  `  <. x ,  ( *Q `  x ) >. )  =  1Q ) ) )
194, 17, 18mp2b 9 . . . . . . 7  |-  ( <.
x ,  ( *Q
`  x ) >.  e.  ( `'  .Q  " { 1Q } )  <->  ( <. x ,  ( *Q `  x ) >.  e.  ( Q.  X.  Q. )  /\  (  .Q  `  <. x ,  ( *Q `  x ) >. )  =  1Q ) )
2013, 16, 19sylanbrc 645 . . . . . 6  |-  ( x  e.  Q.  ->  <. x ,  ( *Q `  x ) >.  e.  ( `'  .Q  " { 1Q } ) )
2120, 1syl6eleqr 2374 . . . . 5  |-  ( x  e.  Q.  ->  <. x ,  ( *Q `  x ) >.  e.  *Q )
22 df-br 4024 . . . . 5  |-  ( x *Q ( *Q `  x )  <->  <. x ,  ( *Q `  x
) >.  e.  *Q )
2321, 22sylibr 203 . . . 4  |-  ( x  e.  Q.  ->  x *Q ( *Q `  x
) )
24 vex 2791 . . . . 5  |-  x  e. 
_V
25 fvex 5499 . . . . 5  |-  ( *Q
`  x )  e. 
_V
2624, 25breldm 4881 . . . 4  |-  ( x *Q ( *Q `  x )  ->  x  e.  dom  *Q )
2723, 26syl 15 . . 3  |-  ( x  e.  Q.  ->  x  e.  dom  *Q )
2827ssriv 3184 . 2  |-  Q.  C_  dom  *Q
2910, 28eqssi 3195 1  |-  dom  *Q  =  Q.
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152   {csn 3640   <.cop 3643   class class class wbr 4023    X. cxp 4685   `'ccnv 4686   dom cdm 4687   "cima 4690    Fn wfn 5215   -->wf 5216   ` cfv 5220  (class class class)co 5819   Q.cnq 8469   1Qc1q 8470    .Q cmq 8473   *Qcrq 8474
This theorem is referenced by:  ltrnq  8598  reclem2pr  8667
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4186  ax-pr 4212  ax-un 4510
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4303  df-id 4307  df-po 4312  df-so 4313  df-fr 4350  df-we 4352  df-ord 4393  df-on 4394  df-lim 4395  df-suc 4396  df-om 4655  df-xp 4693  df-rel 4694  df-cnv 4695  df-co 4696  df-dm 4697  df-rn 4698  df-res 4699  df-ima 4700  df-fun 5222  df-fn 5223  df-f 5224  df-f1 5225  df-fo 5226  df-f1o 5227  df-fv 5228  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6655  df-ni 8491  df-mi 8493  df-lti 8494  df-mpq 8528  df-enq 8530  df-nq 8531  df-erq 8532  df-mq 8534  df-1nq 8535  df-rq 8536
  Copyright terms: Public domain W3C validator