MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmuni Structured version   Unicode version

Theorem dmuni 5071
Description: The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.)
Assertion
Ref Expression
dmuni  |-  dom  U. A  =  U_ x  e.  A  dom  x
Distinct variable group:    x, A

Proof of Theorem dmuni
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 1756 . . . . 5  |-  ( E. z E. x (
<. y ,  z >.  e.  x  /\  x  e.  A )  <->  E. x E. z ( <. y ,  z >.  e.  x  /\  x  e.  A
) )
2 ancom 438 . . . . . . 7  |-  ( ( E. z <. y ,  z >.  e.  x  /\  x  e.  A
)  <->  ( x  e.  A  /\  E. z <. y ,  z >.  e.  x ) )
3 19.41v 1924 . . . . . . 7  |-  ( E. z ( <. y ,  z >.  e.  x  /\  x  e.  A
)  <->  ( E. z <. y ,  z >.  e.  x  /\  x  e.  A ) )
4 vex 2951 . . . . . . . . 9  |-  y  e. 
_V
54eldm2 5060 . . . . . . . 8  |-  ( y  e.  dom  x  <->  E. z <. y ,  z >.  e.  x )
65anbi2i 676 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  dom  x )  <-> 
( x  e.  A  /\  E. z <. y ,  z >.  e.  x
) )
72, 3, 63bitr4i 269 . . . . . 6  |-  ( E. z ( <. y ,  z >.  e.  x  /\  x  e.  A
)  <->  ( x  e.  A  /\  y  e. 
dom  x ) )
87exbii 1592 . . . . 5  |-  ( E. x E. z (
<. y ,  z >.  e.  x  /\  x  e.  A )  <->  E. x
( x  e.  A  /\  y  e.  dom  x ) )
91, 8bitri 241 . . . 4  |-  ( E. z E. x (
<. y ,  z >.  e.  x  /\  x  e.  A )  <->  E. x
( x  e.  A  /\  y  e.  dom  x ) )
10 eluni 4010 . . . . 5  |-  ( <.
y ,  z >.  e.  U. A  <->  E. x
( <. y ,  z
>.  e.  x  /\  x  e.  A ) )
1110exbii 1592 . . . 4  |-  ( E. z <. y ,  z
>.  e.  U. A  <->  E. z E. x ( <. y ,  z >.  e.  x  /\  x  e.  A
) )
12 df-rex 2703 . . . 4  |-  ( E. x  e.  A  y  e.  dom  x  <->  E. x
( x  e.  A  /\  y  e.  dom  x ) )
139, 11, 123bitr4i 269 . . 3  |-  ( E. z <. y ,  z
>.  e.  U. A  <->  E. x  e.  A  y  e.  dom  x )
144eldm2 5060 . . 3  |-  ( y  e.  dom  U. A  <->  E. z <. y ,  z
>.  e.  U. A )
15 eliun 4089 . . 3  |-  ( y  e.  U_ x  e.  A  dom  x  <->  E. x  e.  A  y  e.  dom  x )
1613, 14, 153bitr4i 269 . 2  |-  ( y  e.  dom  U. A  <->  y  e.  U_ x  e.  A  dom  x )
1716eqriv 2432 1  |-  dom  U. A  =  U_ x  e.  A  dom  x
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   E.wrex 2698   <.cop 3809   U.cuni 4007   U_ciun 4085   dom cdm 4870
This theorem is referenced by:  tfrlem8  6637  axdc3lem2  8323  wfrlem7  25536  wfrlem9  25538  frrlem5d  25581  frrlem5e  25582  frrlem7  25584  nofulllem5  25653  bnj1400  29144
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-dm 4880
  Copyright terms: Public domain W3C validator