MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domeng Unicode version

Theorem domeng 6872
Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
domeng  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem domeng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq2 4028 . 2  |-  ( y  =  B  ->  ( A  ~<_  y  <->  A  ~<_  B ) )
2 sseq2 3201 . . . 4  |-  ( y  =  B  ->  (
x  C_  y  <->  x  C_  B
) )
32anbi2d 684 . . 3  |-  ( y  =  B  ->  (
( A  ~~  x  /\  x  C_  y )  <-> 
( A  ~~  x  /\  x  C_  B ) ) )
43exbidv 1612 . 2  |-  ( y  =  B  ->  ( E. x ( A  ~~  x  /\  x  C_  y
)  <->  E. x ( A 
~~  x  /\  x  C_  B ) ) )
5 vex 2792 . . 3  |-  y  e. 
_V
65domen 6871 . 2  |-  ( A  ~<_  y  <->  E. x ( A 
~~  x  /\  x  C_  y ) )
71, 4, 6vtoclbg 2845 1  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1685    C_ wss 3153   class class class wbr 4024    ~~ cen 6856    ~<_ cdom 6857
This theorem is referenced by:  undom  6946  mapdom1  7022  mapdom2  7028  domfi  7080  isfinite2  7111  unxpwdom  7299  domfin4  7933  pwfseq  8282  grudomon  8435  ufldom  17653  erdsze2lem1  23141
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-xp 4694  df-rel 4695  df-cnv 4696  df-dm 4698  df-rn 4699  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-en 6860  df-dom 6861
  Copyright terms: Public domain W3C validator