MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domeng Structured version   Unicode version

Theorem domeng 7114
Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
domeng  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem domeng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq2 4208 . 2  |-  ( y  =  B  ->  ( A  ~<_  y  <->  A  ~<_  B ) )
2 sseq2 3362 . . . 4  |-  ( y  =  B  ->  (
x  C_  y  <->  x  C_  B
) )
32anbi2d 685 . . 3  |-  ( y  =  B  ->  (
( A  ~~  x  /\  x  C_  y )  <-> 
( A  ~~  x  /\  x  C_  B ) ) )
43exbidv 1636 . 2  |-  ( y  =  B  ->  ( E. x ( A  ~~  x  /\  x  C_  y
)  <->  E. x ( A 
~~  x  /\  x  C_  B ) ) )
5 vex 2951 . . 3  |-  y  e. 
_V
65domen 7113 . 2  |-  ( A  ~<_  y  <->  E. x ( A 
~~  x  /\  x  C_  y ) )
71, 4, 6vtoclbg 3004 1  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    C_ wss 3312   class class class wbr 4204    ~~ cen 7098    ~<_ cdom 7099
This theorem is referenced by:  undom  7188  mapdom1  7264  mapdom2  7270  domfi  7322  isfinite2  7357  unxpwdom  7549  domfin4  8183  pwfseq  8531  grudomon  8684  ufldom  17986  erdsze2lem1  24881
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-cnv 4878  df-dm 4880  df-rn 4881  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-en 7102  df-dom 7103
  Copyright terms: Public domain W3C validator