MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf11 Unicode version

Theorem dprdf11 15569
Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
eldprdi.0  |-  .0.  =  ( 0g `  G )
eldprdi.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
eldprdi.1  |-  ( ph  ->  G dom DProd  S )
eldprdi.2  |-  ( ph  ->  dom  S  =  I )
eldprdi.3  |-  ( ph  ->  F  e.  W )
dprdf11.4  |-  ( ph  ->  H  e.  W )
Assertion
Ref Expression
dprdf11  |-  ( ph  ->  ( ( G  gsumg  F )  =  ( G  gsumg  H )  <-> 
F  =  H ) )
Distinct variable groups:    h, F    h, H    h, i, G   
h, I, i    .0. , h    S, h, i
Allowed substitution hints:    ph( h, i)    F( i)    H( i)    W( h, i)    .0. ( i)

Proof of Theorem dprdf11
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . 5  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
2 eldprdi.1 . . . . 5  |-  ( ph  ->  G dom DProd  S )
3 eldprdi.2 . . . . 5  |-  ( ph  ->  dom  S  =  I )
4 eldprdi.3 . . . . 5  |-  ( ph  ->  F  e.  W )
5 eqid 2435 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
61, 2, 3, 4, 5dprdff 15558 . . . 4  |-  ( ph  ->  F : I --> ( Base `  G ) )
7 ffn 5582 . . . 4  |-  ( F : I --> ( Base `  G )  ->  F  Fn  I )
86, 7syl 16 . . 3  |-  ( ph  ->  F  Fn  I )
9 dprdf11.4 . . . . 5  |-  ( ph  ->  H  e.  W )
101, 2, 3, 9, 5dprdff 15558 . . . 4  |-  ( ph  ->  H : I --> ( Base `  G ) )
11 ffn 5582 . . . 4  |-  ( H : I --> ( Base `  G )  ->  H  Fn  I )
1210, 11syl 16 . . 3  |-  ( ph  ->  H  Fn  I )
13 eqfnfv 5818 . . 3  |-  ( ( F  Fn  I  /\  H  Fn  I )  ->  ( F  =  H  <->  A. x  e.  I 
( F `  x
)  =  ( H `
 x ) ) )
148, 12, 13syl2anc 643 . 2  |-  ( ph  ->  ( F  =  H  <->  A. x  e.  I 
( F `  x
)  =  ( H `
 x ) ) )
15 eldprdi.0 . . . 4  |-  .0.  =  ( 0g `  G )
16 eqid 2435 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
1715, 1, 2, 3, 4, 9, 16dprdfsub 15567 . . . . 5  |-  ( ph  ->  ( ( F  o F ( -g `  G
) H )  e.  W  /\  ( G 
gsumg  ( F  o F
( -g `  G ) H ) )  =  ( ( G  gsumg  F ) ( -g `  G
) ( G  gsumg  H ) ) ) )
1817simpld 446 . . . 4  |-  ( ph  ->  ( F  o F ( -g `  G
) H )  e.  W )
1915, 1, 2, 3, 18dprdfeq0 15568 . . 3  |-  ( ph  ->  ( ( G  gsumg  ( F  o F ( -g `  G ) H ) )  =  .0.  <->  ( F  o F ( -g `  G
) H )  =  ( x  e.  I  |->  .0.  ) ) )
2017simprd 450 . . . 4  |-  ( ph  ->  ( G  gsumg  ( F  o F ( -g `  G
) H ) )  =  ( ( G 
gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) ) )
2120eqeq1d 2443 . . 3  |-  ( ph  ->  ( ( G  gsumg  ( F  o F ( -g `  G ) H ) )  =  .0.  <->  ( ( G  gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) )  =  .0.  ) )
22 reldmdprd 15546 . . . . . . . . 9  |-  Rel  dom DProd
2322brrelex2i 4910 . . . . . . . 8  |-  ( G dom DProd  S  ->  S  e. 
_V )
24 dmexg 5121 . . . . . . . 8  |-  ( S  e.  _V  ->  dom  S  e.  _V )
252, 23, 243syl 19 . . . . . . 7  |-  ( ph  ->  dom  S  e.  _V )
263, 25eqeltrrd 2510 . . . . . 6  |-  ( ph  ->  I  e.  _V )
27 fvex 5733 . . . . . . 7  |-  ( F `
 x )  e. 
_V
2827a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  _V )
29 fvex 5733 . . . . . . 7  |-  ( H `
 x )  e. 
_V
3029a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( H `  x )  e.  _V )
316feqmptd 5770 . . . . . 6  |-  ( ph  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
3210feqmptd 5770 . . . . . 6  |-  ( ph  ->  H  =  ( x  e.  I  |->  ( H `
 x ) ) )
3326, 28, 30, 31, 32offval2 6313 . . . . 5  |-  ( ph  ->  ( F  o F ( -g `  G
) H )  =  ( x  e.  I  |->  ( ( F `  x ) ( -g `  G ) ( H `
 x ) ) ) )
3433eqeq1d 2443 . . . 4  |-  ( ph  ->  ( ( F  o F ( -g `  G
) H )  =  ( x  e.  I  |->  .0.  )  <->  ( x  e.  I  |->  ( ( F `  x ) ( -g `  G
) ( H `  x ) ) )  =  ( x  e.  I  |->  .0.  ) )
)
35 ovex 6097 . . . . . . 7  |-  ( ( F `  x ) ( -g `  G
) ( H `  x ) )  e. 
_V
3635rgenw 2765 . . . . . 6  |-  A. x  e.  I  ( ( F `  x )
( -g `  G ) ( H `  x
) )  e.  _V
37 mpteqb 5810 . . . . . 6  |-  ( A. x  e.  I  (
( F `  x
) ( -g `  G
) ( H `  x ) )  e. 
_V  ->  ( ( x  e.  I  |->  ( ( F `  x ) ( -g `  G
) ( H `  x ) ) )  =  ( x  e.  I  |->  .0.  )  <->  A. x  e.  I  ( ( F `  x )
( -g `  G ) ( H `  x
) )  =  .0.  ) )
3836, 37ax-mp 8 . . . . 5  |-  ( ( x  e.  I  |->  ( ( F `  x
) ( -g `  G
) ( H `  x ) ) )  =  ( x  e.  I  |->  .0.  )  <->  A. x  e.  I  ( ( F `  x )
( -g `  G ) ( H `  x
) )  =  .0.  )
39 dprdgrp 15551 . . . . . . . . 9  |-  ( G dom DProd  S  ->  G  e. 
Grp )
402, 39syl 16 . . . . . . . 8  |-  ( ph  ->  G  e.  Grp )
4140adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  G  e.  Grp )
426ffvelrnda 5861 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  G
) )
4310ffvelrnda 5861 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( H `  x )  e.  ( Base `  G
) )
445, 15, 16grpsubeq0 14863 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( F `  x )  e.  ( Base `  G
)  /\  ( H `  x )  e.  (
Base `  G )
)  ->  ( (
( F `  x
) ( -g `  G
) ( H `  x ) )  =  .0.  <->  ( F `  x )  =  ( H `  x ) ) )
4541, 42, 43, 44syl3anc 1184 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
( ( F `  x ) ( -g `  G ) ( H `
 x ) )  =  .0.  <->  ( F `  x )  =  ( H `  x ) ) )
4645ralbidva 2713 . . . . 5  |-  ( ph  ->  ( A. x  e.  I  ( ( F `
 x ) (
-g `  G )
( H `  x
) )  =  .0.  <->  A. x  e.  I  ( F `  x )  =  ( H `  x ) ) )
4738, 46syl5bb 249 . . . 4  |-  ( ph  ->  ( ( x  e.  I  |->  ( ( F `
 x ) (
-g `  G )
( H `  x
) ) )  =  ( x  e.  I  |->  .0.  )  <->  A. x  e.  I  ( F `  x )  =  ( H `  x ) ) )
4834, 47bitrd 245 . . 3  |-  ( ph  ->  ( ( F  o F ( -g `  G
) H )  =  ( x  e.  I  |->  .0.  )  <->  A. x  e.  I  ( F `  x )  =  ( H `  x ) ) )
4919, 21, 483bitr3d 275 . 2  |-  ( ph  ->  ( ( ( G 
gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) )  =  .0.  <->  A. x  e.  I 
( F `  x
)  =  ( H `
 x ) ) )
505dprdssv 15562 . . . 4  |-  ( G DProd 
S )  C_  ( Base `  G )
5115, 1, 2, 3, 4eldprdi 15564 . . . 4  |-  ( ph  ->  ( G  gsumg  F )  e.  ( G DProd  S ) )
5250, 51sseldi 3338 . . 3  |-  ( ph  ->  ( G  gsumg  F )  e.  (
Base `  G )
)
5315, 1, 2, 3, 9eldprdi 15564 . . . 4  |-  ( ph  ->  ( G  gsumg  H )  e.  ( G DProd  S ) )
5450, 53sseldi 3338 . . 3  |-  ( ph  ->  ( G  gsumg  H )  e.  (
Base `  G )
)
555, 15, 16grpsubeq0 14863 . . 3  |-  ( ( G  e.  Grp  /\  ( G  gsumg  F )  e.  (
Base `  G )  /\  ( G  gsumg  H )  e.  (
Base `  G )
)  ->  ( (
( G  gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) )  =  .0.  <->  ( G  gsumg  F )  =  ( G  gsumg  H ) ) )
5640, 52, 54, 55syl3anc 1184 . 2  |-  ( ph  ->  ( ( ( G 
gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) )  =  .0.  <->  ( G  gsumg  F )  =  ( G  gsumg  H ) ) )
5714, 49, 563bitr2rd 274 1  |-  ( ph  ->  ( ( G  gsumg  F )  =  ( G  gsumg  H )  <-> 
F  =  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701   _Vcvv 2948    \ cdif 3309   {csn 3806   class class class wbr 4204    e. cmpt 4258   `'ccnv 4868   dom cdm 4869   "cima 4872    Fn wfn 5440   -->wf 5441   ` cfv 5445  (class class class)co 6072    o Fcof 6294   X_cixp 7054   Fincfn 7100   Basecbs 13457   0gc0g 13711    gsumg cgsu 13712   Grpcgrp 14673   -gcsg 14676   DProd cdprd 15542
This theorem is referenced by:  dmdprdsplitlem  15583  dpjeq  15605
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-tpos 6470  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-map 7011  df-ixp 7055  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-oi 7468  df-card 7815  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-nn 9990  df-2 10047  df-n0 10211  df-z 10272  df-uz 10478  df-fz 11033  df-fzo 11124  df-seq 11312  df-hash 11607  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-0g 13715  df-gsum 13716  df-mre 13799  df-mrc 13800  df-acs 13802  df-mnd 14678  df-mhm 14726  df-submnd 14727  df-grp 14800  df-minusg 14801  df-sbg 14802  df-mulg 14803  df-subg 14929  df-ghm 14992  df-gim 15034  df-cntz 15104  df-oppg 15130  df-cmn 15402  df-dprd 15544
  Copyright terms: Public domain W3C validator