MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf11 Unicode version

Theorem dprdf11 15468
Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
eldprdi.0  |-  .0.  =  ( 0g `  G )
eldprdi.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
eldprdi.1  |-  ( ph  ->  G dom DProd  S )
eldprdi.2  |-  ( ph  ->  dom  S  =  I )
eldprdi.3  |-  ( ph  ->  F  e.  W )
dprdf11.4  |-  ( ph  ->  H  e.  W )
Assertion
Ref Expression
dprdf11  |-  ( ph  ->  ( ( G  gsumg  F )  =  ( G  gsumg  H )  <-> 
F  =  H ) )
Distinct variable groups:    h, F    h, H    h, i, G   
h, I, i    .0. , h    S, h, i
Allowed substitution hints:    ph( h, i)    F( i)    H( i)    W( h, i)    .0. ( i)

Proof of Theorem dprdf11
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . 5  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
2 eldprdi.1 . . . . 5  |-  ( ph  ->  G dom DProd  S )
3 eldprdi.2 . . . . 5  |-  ( ph  ->  dom  S  =  I )
4 eldprdi.3 . . . . 5  |-  ( ph  ->  F  e.  W )
5 eqid 2366 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
61, 2, 3, 4, 5dprdff 15457 . . . 4  |-  ( ph  ->  F : I --> ( Base `  G ) )
7 ffn 5495 . . . 4  |-  ( F : I --> ( Base `  G )  ->  F  Fn  I )
86, 7syl 15 . . 3  |-  ( ph  ->  F  Fn  I )
9 dprdf11.4 . . . . 5  |-  ( ph  ->  H  e.  W )
101, 2, 3, 9, 5dprdff 15457 . . . 4  |-  ( ph  ->  H : I --> ( Base `  G ) )
11 ffn 5495 . . . 4  |-  ( H : I --> ( Base `  G )  ->  H  Fn  I )
1210, 11syl 15 . . 3  |-  ( ph  ->  H  Fn  I )
13 eqfnfv 5729 . . 3  |-  ( ( F  Fn  I  /\  H  Fn  I )  ->  ( F  =  H  <->  A. x  e.  I 
( F `  x
)  =  ( H `
 x ) ) )
148, 12, 13syl2anc 642 . 2  |-  ( ph  ->  ( F  =  H  <->  A. x  e.  I 
( F `  x
)  =  ( H `
 x ) ) )
15 eldprdi.0 . . . 4  |-  .0.  =  ( 0g `  G )
16 eqid 2366 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
1715, 1, 2, 3, 4, 9, 16dprdfsub 15466 . . . . 5  |-  ( ph  ->  ( ( F  o F ( -g `  G
) H )  e.  W  /\  ( G 
gsumg  ( F  o F
( -g `  G ) H ) )  =  ( ( G  gsumg  F ) ( -g `  G
) ( G  gsumg  H ) ) ) )
1817simpld 445 . . . 4  |-  ( ph  ->  ( F  o F ( -g `  G
) H )  e.  W )
1915, 1, 2, 3, 18dprdfeq0 15467 . . 3  |-  ( ph  ->  ( ( G  gsumg  ( F  o F ( -g `  G ) H ) )  =  .0.  <->  ( F  o F ( -g `  G
) H )  =  ( x  e.  I  |->  .0.  ) ) )
2017simprd 449 . . . 4  |-  ( ph  ->  ( G  gsumg  ( F  o F ( -g `  G
) H ) )  =  ( ( G 
gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) ) )
2120eqeq1d 2374 . . 3  |-  ( ph  ->  ( ( G  gsumg  ( F  o F ( -g `  G ) H ) )  =  .0.  <->  ( ( G  gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) )  =  .0.  ) )
22 reldmdprd 15445 . . . . . . . . 9  |-  Rel  dom DProd
2322brrelex2i 4833 . . . . . . . 8  |-  ( G dom DProd  S  ->  S  e. 
_V )
24 dmexg 5042 . . . . . . . 8  |-  ( S  e.  _V  ->  dom  S  e.  _V )
252, 23, 243syl 18 . . . . . . 7  |-  ( ph  ->  dom  S  e.  _V )
263, 25eqeltrrd 2441 . . . . . 6  |-  ( ph  ->  I  e.  _V )
27 fvex 5646 . . . . . . 7  |-  ( F `
 x )  e. 
_V
2827a1i 10 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  _V )
29 fvex 5646 . . . . . . 7  |-  ( H `
 x )  e. 
_V
3029a1i 10 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( H `  x )  e.  _V )
316feqmptd 5682 . . . . . 6  |-  ( ph  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
3210feqmptd 5682 . . . . . 6  |-  ( ph  ->  H  =  ( x  e.  I  |->  ( H `
 x ) ) )
3326, 28, 30, 31, 32offval2 6222 . . . . 5  |-  ( ph  ->  ( F  o F ( -g `  G
) H )  =  ( x  e.  I  |->  ( ( F `  x ) ( -g `  G ) ( H `
 x ) ) ) )
3433eqeq1d 2374 . . . 4  |-  ( ph  ->  ( ( F  o F ( -g `  G
) H )  =  ( x  e.  I  |->  .0.  )  <->  ( x  e.  I  |->  ( ( F `  x ) ( -g `  G
) ( H `  x ) ) )  =  ( x  e.  I  |->  .0.  ) )
)
35 ovex 6006 . . . . . . 7  |-  ( ( F `  x ) ( -g `  G
) ( H `  x ) )  e. 
_V
3635rgenw 2695 . . . . . 6  |-  A. x  e.  I  ( ( F `  x )
( -g `  G ) ( H `  x
) )  e.  _V
37 mpteqb 5721 . . . . . 6  |-  ( A. x  e.  I  (
( F `  x
) ( -g `  G
) ( H `  x ) )  e. 
_V  ->  ( ( x  e.  I  |->  ( ( F `  x ) ( -g `  G
) ( H `  x ) ) )  =  ( x  e.  I  |->  .0.  )  <->  A. x  e.  I  ( ( F `  x )
( -g `  G ) ( H `  x
) )  =  .0.  ) )
3836, 37ax-mp 8 . . . . 5  |-  ( ( x  e.  I  |->  ( ( F `  x
) ( -g `  G
) ( H `  x ) ) )  =  ( x  e.  I  |->  .0.  )  <->  A. x  e.  I  ( ( F `  x )
( -g `  G ) ( H `  x
) )  =  .0.  )
39 dprdgrp 15450 . . . . . . . . 9  |-  ( G dom DProd  S  ->  G  e. 
Grp )
402, 39syl 15 . . . . . . . 8  |-  ( ph  ->  G  e.  Grp )
4140adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  G  e.  Grp )
42 ffvelrn 5770 . . . . . . . 8  |-  ( ( F : I --> ( Base `  G )  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  G
) )
436, 42sylan 457 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  G
) )
44 ffvelrn 5770 . . . . . . . 8  |-  ( ( H : I --> ( Base `  G )  /\  x  e.  I )  ->  ( H `  x )  e.  ( Base `  G
) )
4510, 44sylan 457 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( H `  x )  e.  ( Base `  G
) )
465, 15, 16grpsubeq0 14762 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( F `  x )  e.  ( Base `  G
)  /\  ( H `  x )  e.  (
Base `  G )
)  ->  ( (
( F `  x
) ( -g `  G
) ( H `  x ) )  =  .0.  <->  ( F `  x )  =  ( H `  x ) ) )
4741, 43, 45, 46syl3anc 1183 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
( ( F `  x ) ( -g `  G ) ( H `
 x ) )  =  .0.  <->  ( F `  x )  =  ( H `  x ) ) )
4847ralbidva 2644 . . . . 5  |-  ( ph  ->  ( A. x  e.  I  ( ( F `
 x ) (
-g `  G )
( H `  x
) )  =  .0.  <->  A. x  e.  I  ( F `  x )  =  ( H `  x ) ) )
4938, 48syl5bb 248 . . . 4  |-  ( ph  ->  ( ( x  e.  I  |->  ( ( F `
 x ) (
-g `  G )
( H `  x
) ) )  =  ( x  e.  I  |->  .0.  )  <->  A. x  e.  I  ( F `  x )  =  ( H `  x ) ) )
5034, 49bitrd 244 . . 3  |-  ( ph  ->  ( ( F  o F ( -g `  G
) H )  =  ( x  e.  I  |->  .0.  )  <->  A. x  e.  I  ( F `  x )  =  ( H `  x ) ) )
5119, 21, 503bitr3d 274 . 2  |-  ( ph  ->  ( ( ( G 
gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) )  =  .0.  <->  A. x  e.  I 
( F `  x
)  =  ( H `
 x ) ) )
525dprdssv 15461 . . . 4  |-  ( G DProd 
S )  C_  ( Base `  G )
5315, 1, 2, 3, 4eldprdi 15463 . . . 4  |-  ( ph  ->  ( G  gsumg  F )  e.  ( G DProd  S ) )
5452, 53sseldi 3264 . . 3  |-  ( ph  ->  ( G  gsumg  F )  e.  (
Base `  G )
)
5515, 1, 2, 3, 9eldprdi 15463 . . . 4  |-  ( ph  ->  ( G  gsumg  H )  e.  ( G DProd  S ) )
5652, 55sseldi 3264 . . 3  |-  ( ph  ->  ( G  gsumg  H )  e.  (
Base `  G )
)
575, 15, 16grpsubeq0 14762 . . 3  |-  ( ( G  e.  Grp  /\  ( G  gsumg  F )  e.  (
Base `  G )  /\  ( G  gsumg  H )  e.  (
Base `  G )
)  ->  ( (
( G  gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) )  =  .0.  <->  ( G  gsumg  F )  =  ( G  gsumg  H ) ) )
5840, 54, 56, 57syl3anc 1183 . 2  |-  ( ph  ->  ( ( ( G 
gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) )  =  .0.  <->  ( G  gsumg  F )  =  ( G  gsumg  H ) ) )
5914, 51, 583bitr2rd 273 1  |-  ( ph  ->  ( ( G  gsumg  F )  =  ( G  gsumg  H )  <-> 
F  =  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    e. wcel 1715   A.wral 2628   {crab 2632   _Vcvv 2873    \ cdif 3235   {csn 3729   class class class wbr 4125    e. cmpt 4179   `'ccnv 4791   dom cdm 4792   "cima 4795    Fn wfn 5353   -->wf 5354   ` cfv 5358  (class class class)co 5981    o Fcof 6203   X_cixp 6960   Fincfn 7006   Basecbs 13356   0gc0g 13610    gsumg cgsu 13611   Grpcgrp 14572   -gcsg 14575   DProd cdprd 15441
This theorem is referenced by:  dmdprdsplitlem  15482  dpjeq  15504
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-1st 6249  df-2nd 6250  df-tpos 6376  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-map 6917  df-ixp 6961  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-oi 7372  df-card 7719  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-2 9951  df-n0 10115  df-z 10176  df-uz 10382  df-fz 10936  df-fzo 11026  df-seq 11211  df-hash 11506  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-ress 13363  df-plusg 13429  df-0g 13614  df-gsum 13615  df-mre 13698  df-mrc 13699  df-acs 13701  df-mnd 14577  df-mhm 14625  df-submnd 14626  df-grp 14699  df-minusg 14700  df-sbg 14701  df-mulg 14702  df-subg 14828  df-ghm 14891  df-gim 14933  df-cntz 15003  df-oppg 15029  df-cmn 15301  df-dprd 15443
  Copyright terms: Public domain W3C validator