MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf11 Unicode version

Theorem dprdf11 15254
Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
eldprdi.0  |-  .0.  =  ( 0g `  G )
eldprdi.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
eldprdi.1  |-  ( ph  ->  G  dom DProd  S )
eldprdi.2  |-  ( ph  ->  dom  S  =  I )
eldprdi.3  |-  ( ph  ->  F  e.  W )
dprdf11.4  |-  ( ph  ->  H  e.  W )
Assertion
Ref Expression
dprdf11  |-  ( ph  ->  ( ( G  gsumg  F )  =  ( G  gsumg  H )  <-> 
F  =  H ) )
Distinct variable groups:    h, F    h, H    h, i, G   
h, I, i    .0. , h    S, h, i
Allowed substitution hints:    ph( h, i)    F( i)    H( i)    W( h, i)    .0. ( i)

Proof of Theorem dprdf11
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . 5  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
2 eldprdi.1 . . . . 5  |-  ( ph  ->  G  dom DProd  S )
3 eldprdi.2 . . . . 5  |-  ( ph  ->  dom  S  =  I )
4 eldprdi.3 . . . . 5  |-  ( ph  ->  F  e.  W )
5 eqid 2284 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
61, 2, 3, 4, 5dprdff 15243 . . . 4  |-  ( ph  ->  F : I --> ( Base `  G ) )
7 ffn 5355 . . . 4  |-  ( F : I --> ( Base `  G )  ->  F  Fn  I )
86, 7syl 15 . . 3  |-  ( ph  ->  F  Fn  I )
9 dprdf11.4 . . . . 5  |-  ( ph  ->  H  e.  W )
101, 2, 3, 9, 5dprdff 15243 . . . 4  |-  ( ph  ->  H : I --> ( Base `  G ) )
11 ffn 5355 . . . 4  |-  ( H : I --> ( Base `  G )  ->  H  Fn  I )
1210, 11syl 15 . . 3  |-  ( ph  ->  H  Fn  I )
13 eqfnfv 5584 . . 3  |-  ( ( F  Fn  I  /\  H  Fn  I )  ->  ( F  =  H  <->  A. x  e.  I 
( F `  x
)  =  ( H `
 x ) ) )
148, 12, 13syl2anc 642 . 2  |-  ( ph  ->  ( F  =  H  <->  A. x  e.  I 
( F `  x
)  =  ( H `
 x ) ) )
15 eldprdi.0 . . . 4  |-  .0.  =  ( 0g `  G )
16 eqid 2284 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
1715, 1, 2, 3, 4, 9, 16dprdfsub 15252 . . . . 5  |-  ( ph  ->  ( ( F  o F ( -g `  G
) H )  e.  W  /\  ( G 
gsumg  ( F  o F
( -g `  G ) H ) )  =  ( ( G  gsumg  F ) ( -g `  G
) ( G  gsumg  H ) ) ) )
1817simpld 445 . . . 4  |-  ( ph  ->  ( F  o F ( -g `  G
) H )  e.  W )
1915, 1, 2, 3, 18dprdfeq0 15253 . . 3  |-  ( ph  ->  ( ( G  gsumg  ( F  o F ( -g `  G ) H ) )  =  .0.  <->  ( F  o F ( -g `  G
) H )  =  ( x  e.  I  |->  .0.  ) ) )
2017simprd 449 . . . 4  |-  ( ph  ->  ( G  gsumg  ( F  o F ( -g `  G
) H ) )  =  ( ( G 
gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) ) )
2120eqeq1d 2292 . . 3  |-  ( ph  ->  ( ( G  gsumg  ( F  o F ( -g `  G ) H ) )  =  .0.  <->  ( ( G  gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) )  =  .0.  ) )
22 reldmdprd 15231 . . . . . . . . 9  |-  Rel  dom DProd
2322brrelex2i 4729 . . . . . . . 8  |-  ( G  dom DProd  S  ->  S  e. 
_V )
24 dmexg 4938 . . . . . . . 8  |-  ( S  e.  _V  ->  dom  S  e.  _V )
252, 23, 243syl 18 . . . . . . 7  |-  ( ph  ->  dom  S  e.  _V )
263, 25eqeltrrd 2359 . . . . . 6  |-  ( ph  ->  I  e.  _V )
27 fvex 5500 . . . . . . 7  |-  ( F `
 x )  e. 
_V
2827a1i 10 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  _V )
29 fvex 5500 . . . . . . 7  |-  ( H `
 x )  e. 
_V
3029a1i 10 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( H `  x )  e.  _V )
316feqmptd 5537 . . . . . 6  |-  ( ph  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
3210feqmptd 5537 . . . . . 6  |-  ( ph  ->  H  =  ( x  e.  I  |->  ( H `
 x ) ) )
3326, 28, 30, 31, 32offval2 6057 . . . . 5  |-  ( ph  ->  ( F  o F ( -g `  G
) H )  =  ( x  e.  I  |->  ( ( F `  x ) ( -g `  G ) ( H `
 x ) ) ) )
3433eqeq1d 2292 . . . 4  |-  ( ph  ->  ( ( F  o F ( -g `  G
) H )  =  ( x  e.  I  |->  .0.  )  <->  ( x  e.  I  |->  ( ( F `  x ) ( -g `  G
) ( H `  x ) ) )  =  ( x  e.  I  |->  .0.  ) )
)
35 ovex 5845 . . . . . . 7  |-  ( ( F `  x ) ( -g `  G
) ( H `  x ) )  e. 
_V
3635rgenw 2611 . . . . . 6  |-  A. x  e.  I  ( ( F `  x )
( -g `  G ) ( H `  x
) )  e.  _V
37 mpteqb 5576 . . . . . 6  |-  ( A. x  e.  I  (
( F `  x
) ( -g `  G
) ( H `  x ) )  e. 
_V  ->  ( ( x  e.  I  |->  ( ( F `  x ) ( -g `  G
) ( H `  x ) ) )  =  ( x  e.  I  |->  .0.  )  <->  A. x  e.  I  ( ( F `  x )
( -g `  G ) ( H `  x
) )  =  .0.  ) )
3836, 37ax-mp 8 . . . . 5  |-  ( ( x  e.  I  |->  ( ( F `  x
) ( -g `  G
) ( H `  x ) ) )  =  ( x  e.  I  |->  .0.  )  <->  A. x  e.  I  ( ( F `  x )
( -g `  G ) ( H `  x
) )  =  .0.  )
39 dprdgrp 15236 . . . . . . . . 9  |-  ( G  dom DProd  S  ->  G  e. 
Grp )
402, 39syl 15 . . . . . . . 8  |-  ( ph  ->  G  e.  Grp )
4140adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  G  e.  Grp )
42 ffvelrn 5625 . . . . . . . 8  |-  ( ( F : I --> ( Base `  G )  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  G
) )
436, 42sylan 457 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  G
) )
44 ffvelrn 5625 . . . . . . . 8  |-  ( ( H : I --> ( Base `  G )  /\  x  e.  I )  ->  ( H `  x )  e.  ( Base `  G
) )
4510, 44sylan 457 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( H `  x )  e.  ( Base `  G
) )
465, 15, 16grpsubeq0 14548 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( F `  x )  e.  ( Base `  G
)  /\  ( H `  x )  e.  (
Base `  G )
)  ->  ( (
( F `  x
) ( -g `  G
) ( H `  x ) )  =  .0.  <->  ( F `  x )  =  ( H `  x ) ) )
4741, 43, 45, 46syl3anc 1182 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
( ( F `  x ) ( -g `  G ) ( H `
 x ) )  =  .0.  <->  ( F `  x )  =  ( H `  x ) ) )
4847ralbidva 2560 . . . . 5  |-  ( ph  ->  ( A. x  e.  I  ( ( F `
 x ) (
-g `  G )
( H `  x
) )  =  .0.  <->  A. x  e.  I  ( F `  x )  =  ( H `  x ) ) )
4938, 48syl5bb 248 . . . 4  |-  ( ph  ->  ( ( x  e.  I  |->  ( ( F `
 x ) (
-g `  G )
( H `  x
) ) )  =  ( x  e.  I  |->  .0.  )  <->  A. x  e.  I  ( F `  x )  =  ( H `  x ) ) )
5034, 49bitrd 244 . . 3  |-  ( ph  ->  ( ( F  o F ( -g `  G
) H )  =  ( x  e.  I  |->  .0.  )  <->  A. x  e.  I  ( F `  x )  =  ( H `  x ) ) )
5119, 21, 503bitr3d 274 . 2  |-  ( ph  ->  ( ( ( G 
gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) )  =  .0.  <->  A. x  e.  I 
( F `  x
)  =  ( H `
 x ) ) )
525dprdssv 15247 . . . 4  |-  ( G DProd 
S )  C_  ( Base `  G )
5315, 1, 2, 3, 4eldprdi 15249 . . . 4  |-  ( ph  ->  ( G  gsumg  F )  e.  ( G DProd  S ) )
5452, 53sseldi 3179 . . 3  |-  ( ph  ->  ( G  gsumg  F )  e.  (
Base `  G )
)
5515, 1, 2, 3, 9eldprdi 15249 . . . 4  |-  ( ph  ->  ( G  gsumg  H )  e.  ( G DProd  S ) )
5652, 55sseldi 3179 . . 3  |-  ( ph  ->  ( G  gsumg  H )  e.  (
Base `  G )
)
575, 15, 16grpsubeq0 14548 . . 3  |-  ( ( G  e.  Grp  /\  ( G  gsumg  F )  e.  (
Base `  G )  /\  ( G  gsumg  H )  e.  (
Base `  G )
)  ->  ( (
( G  gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) )  =  .0.  <->  ( G  gsumg  F )  =  ( G  gsumg  H ) ) )
5840, 54, 56, 57syl3anc 1182 . 2  |-  ( ph  ->  ( ( ( G 
gsumg  F ) ( -g `  G ) ( G 
gsumg  H ) )  =  .0.  <->  ( G  gsumg  F )  =  ( G  gsumg  H ) ) )
5914, 51, 583bitr2rd 273 1  |-  ( ph  ->  ( ( G  gsumg  F )  =  ( G  gsumg  H )  <-> 
F  =  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685   A.wral 2544   {crab 2548   _Vcvv 2789    \ cdif 3150   {csn 3641   class class class wbr 4024    e. cmpt 4078   `'ccnv 4687    dom cdm 4688   "cima 4691    Fn wfn 5216   -->wf 5217   ` cfv 5221  (class class class)co 5820    o Fcof 6038   X_cixp 6813   Fincfn 6859   Basecbs 13144   0gc0g 13396    gsumg cgsu 13397   Grpcgrp 14358   -gcsg 14361   DProd cdprd 15227
This theorem is referenced by:  dmdprdsplitlem  15268  dpjeq  15290
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-tpos 6196  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-ixp 6814  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-oi 7221  df-card 7568  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-nn 9743  df-2 9800  df-n0 9962  df-z 10021  df-uz 10227  df-fz 10779  df-fzo 10867  df-seq 11043  df-hash 11334  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-0g 13400  df-gsum 13401  df-mre 13484  df-mrc 13485  df-acs 13487  df-mnd 14363  df-mhm 14411  df-submnd 14412  df-grp 14485  df-minusg 14486  df-sbg 14487  df-mulg 14488  df-subg 14614  df-ghm 14677  df-gim 14719  df-cntz 14789  df-oppg 14815  df-cmn 15087  df-dprd 15229
  Copyright terms: Public domain W3C validator