MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dral2 Unicode version

Theorem dral2 1906
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Hypothesis
Ref Expression
dral1.1  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dral2  |-  ( A. x  x  =  y  ->  ( A. z ph  <->  A. z ps ) )

Proof of Theorem dral2
StepHypRef Expression
1 hbae 1893 . 2  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
2 dral1.1 . 2  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
31, 2albidh 1577 1  |-  ( A. x  x  =  y  ->  ( A. z ph  <->  A. z ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527
This theorem is referenced by:  drnf2  1910  equveli  1928  sbal1  2065  drnfc1  2435  drnfc2  2436  axpownd  8223  a12lem1  29130
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator