MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dral2 Unicode version

Theorem dral2 1858
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Hypothesis
Ref Expression
dral1.1  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dral2  |-  ( A. x  x  =  y  ->  ( A. z ph  <->  A. z ps ) )

Proof of Theorem dral2
StepHypRef Expression
1 hbae 1841 . 2  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
2 dral1.1 . 2  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
31, 2albidh 1589 1  |-  ( A. x  x  =  y  ->  ( A. z ph  <->  A. z ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178   A.wal 1532
This theorem is referenced by:  drnf2  1863  equveli  1881  sbal1  2089  drnfc1  2410  drnfc2  2411  axpownd  8191  a12lem1  28297
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
  Copyright terms: Public domain W3C validator