MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsb1 Unicode version

Theorem drsb1 2102
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
drsb1  |-  ( A. x  x  =  y  ->  ( [ z  /  x ] ph  <->  [ z  /  y ] ph ) )

Proof of Theorem drsb1
StepHypRef Expression
1 equequ1 1696 . . . . 5  |-  ( x  =  y  ->  (
x  =  z  <->  y  =  z ) )
21sps 1770 . . . 4  |-  ( A. x  x  =  y  ->  ( x  =  z  <-> 
y  =  z ) )
32imbi1d 309 . . 3  |-  ( A. x  x  =  y  ->  ( ( x  =  z  ->  ph )  <->  ( y  =  z  ->  ph )
) )
42anbi1d 686 . . . 4  |-  ( A. x  x  =  y  ->  ( ( x  =  z  /\  ph )  <->  ( y  =  z  /\  ph ) ) )
54drex1 2055 . . 3  |-  ( A. x  x  =  y  ->  ( E. x ( x  =  z  /\  ph )  <->  E. y ( y  =  z  /\  ph ) ) )
63, 5anbi12d 692 . 2  |-  ( A. x  x  =  y  ->  ( ( ( x  =  z  ->  ph )  /\  E. x ( x  =  z  /\  ph ) )  <->  ( (
y  =  z  ->  ph )  /\  E. y
( y  =  z  /\  ph ) ) ) )
7 df-sb 1659 . 2  |-  ( [ z  /  x ] ph 
<->  ( ( x  =  z  ->  ph )  /\  E. x ( x  =  z  /\  ph )
) )
8 df-sb 1659 . 2  |-  ( [ z  /  y ]
ph 
<->  ( ( y  =  z  ->  ph )  /\  E. y ( y  =  z  /\  ph )
) )
96, 7, 83bitr4g 280 1  |-  ( A. x  x  =  y  ->  ( [ z  /  x ] ph  <->  [ z  /  y ] ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550   [wsb 1658
This theorem is referenced by:  sbequiOLD  2137  nfsb4tOLD  2155  sbco3  2163  sbcom  2164  sb9i  2169  iotaeq  5412
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554  df-sb 1659
  Copyright terms: Public domain W3C validator