MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsb2 Unicode version

Theorem drsb2 1954
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Assertion
Ref Expression
drsb2  |-  ( A. x  x  =  y  ->  ( [ x  / 
z ] ph  <->  [ y  /  z ] ph ) )

Proof of Theorem drsb2
StepHypRef Expression
1 sbequ 1953 . 2  |-  ( x  =  y  ->  ( [ x  /  z ] ph  <->  [ y  /  z ] ph ) )
21a4s 1700 1  |-  ( A. x  x  =  y  ->  ( [ x  / 
z ] ph  <->  [ y  /  z ] ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178   A.wal 1532    = wceq 1619   [wsb 1883
This theorem is referenced by:  sb9i  1989
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884
  Copyright terms: Public domain W3C validator