MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dscmet Unicode version

Theorem dscmet 18058
Description: The discrete metric on any set  X. Definition 1.1-8 of [Kreyszig] p. 8. (Contributed by FL, 12-Oct-2006.)
Hypothesis
Ref Expression
dscmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( x  =  y ,  0 ,  1 ) )
Assertion
Ref Expression
dscmet  |-  ( X  e.  V  ->  D  e.  ( Met `  X
) )
Distinct variable group:    x, y, X
Allowed substitution hints:    D( x, y)    V( x, y)

Proof of Theorem dscmet
StepHypRef Expression
1 0re 8806 . . . . . 6  |-  0  e.  RR
2 1re 8805 . . . . . 6  |-  1  e.  RR
31, 2keepel 3596 . . . . 5  |-  if ( x  =  y ,  0 ,  1 )  e.  RR
43rgen2w 2586 . . . 4  |-  A. x  e.  X  A. y  e.  X  if (
x  =  y ,  0 ,  1 )  e.  RR
5 dscmet.1 . . . . 5  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( x  =  y ,  0 ,  1 ) )
65fmpt2 6125 . . . 4  |-  ( A. x  e.  X  A. y  e.  X  if ( x  =  y ,  0 ,  1 )  e.  RR  <->  D :
( X  X.  X
) --> RR )
74, 6mpbi 201 . . 3  |-  D :
( X  X.  X
) --> RR
8 equequ1 1829 . . . . . . . . 9  |-  ( x  =  w  ->  (
x  =  y  <->  w  =  y ) )
98ifbid 3557 . . . . . . . 8  |-  ( x  =  w  ->  if ( x  =  y ,  0 ,  1 )  =  if ( w  =  y ,  0 ,  1 ) )
10 equequ2 1830 . . . . . . . . 9  |-  ( y  =  v  ->  (
w  =  y  <->  w  =  v ) )
1110ifbid 3557 . . . . . . . 8  |-  ( y  =  v  ->  if ( w  =  y ,  0 ,  1 )  =  if ( w  =  v ,  0 ,  1 ) )
12 0nn0 9948 . . . . . . . . . 10  |-  0  e.  NN0
13 1nn0 9949 . . . . . . . . . 10  |-  1  e.  NN0
1412, 13keepel 3596 . . . . . . . . 9  |-  if ( w  =  v ,  0 ,  1 )  e.  NN0
1514elexi 2772 . . . . . . . 8  |-  if ( w  =  v ,  0 ,  1 )  e.  _V
169, 11, 5, 15ovmpt2 5917 . . . . . . 7  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( w D v )  =  if ( w  =  v ,  0 ,  1 ) )
1716eqeq1d 2266 . . . . . 6  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( ( w D v )  =  0  <-> 
if ( w  =  v ,  0 ,  1 )  =  0 ) )
18 iffalse 3546 . . . . . . . . . 10  |-  ( -.  w  =  v  ->  if ( w  =  v ,  0 ,  1 )  =  1 )
19 ax-1ne0 8774 . . . . . . . . . . 11  |-  1  =/=  0
2019a1i 12 . . . . . . . . . 10  |-  ( -.  w  =  v  -> 
1  =/=  0 )
2118, 20eqnetrd 2439 . . . . . . . . 9  |-  ( -.  w  =  v  ->  if ( w  =  v ,  0 ,  1 )  =/=  0 )
2221neneqd 2437 . . . . . . . 8  |-  ( -.  w  =  v  ->  -.  if ( w  =  v ,  0 ,  1 )  =  0 )
2322con4i 124 . . . . . . 7  |-  ( if ( w  =  v ,  0 ,  1 )  =  0  ->  w  =  v )
24 iftrue 3545 . . . . . . 7  |-  ( w  =  v  ->  if ( w  =  v ,  0 ,  1 )  =  0 )
2523, 24impbii 182 . . . . . 6  |-  ( if ( w  =  v ,  0 ,  1 )  =  0  <->  w  =  v )
2617, 25syl6bb 254 . . . . 5  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( ( w D v )  =  0  <-> 
w  =  v ) )
2712, 13keepel 3596 . . . . . . . . . . 11  |-  if ( u  =  w ,  0 ,  1 )  e.  NN0
2812, 13keepel 3596 . . . . . . . . . . 11  |-  if ( u  =  v ,  0 ,  1 )  e.  NN0
2927, 28nn0addcli 9969 . . . . . . . . . 10  |-  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN0
30 elnn0 9935 . . . . . . . . . 10  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN0  <->  (
( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  \/  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0 ) )
3129, 30mpbi 201 . . . . . . . . 9  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  \/  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0 )
32 breq1 4000 . . . . . . . . . . . 12  |-  ( 0  =  if ( w  =  v ,  0 ,  1 )  -> 
( 0  <_  1  <->  if ( w  =  v ,  0 ,  1 )  <_  1 ) )
33 breq1 4000 . . . . . . . . . . . 12  |-  ( 1  =  if ( w  =  v ,  0 ,  1 )  -> 
( 1  <_  1  <->  if ( w  =  v ,  0 ,  1 )  <_  1 ) )
34 0le1 9265 . . . . . . . . . . . 12  |-  0  <_  1
352leidi 9275 . . . . . . . . . . . 12  |-  1  <_  1
3632, 33, 34, 35keephyp 3593 . . . . . . . . . . 11  |-  if ( w  =  v ,  0 ,  1 )  <_  1
37 nnge1 9740 . . . . . . . . . . 11  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  ->  1  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
3814nn0rei 9944 . . . . . . . . . . . 12  |-  if ( w  =  v ,  0 ,  1 )  e.  RR
3929nn0rei 9944 . . . . . . . . . . . 12  |-  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  RR
4038, 2, 39letri 8916 . . . . . . . . . . 11  |-  ( ( if ( w  =  v ,  0 ,  1 )  <_  1  /\  1  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )  ->  if ( w  =  v ,  0 ,  1 )  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
4136, 37, 40sylancr 647 . . . . . . . . . 10  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  ->  if ( w  =  v ,  0 ,  1 )  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
4227nn0ge0i 9961 . . . . . . . . . . . . 13  |-  0  <_  if ( u  =  w ,  0 ,  1 )
4328nn0ge0i 9961 . . . . . . . . . . . . 13  |-  0  <_  if ( u  =  v ,  0 ,  1 )
4427nn0rei 9944 . . . . . . . . . . . . . 14  |-  if ( u  =  w ,  0 ,  1 )  e.  RR
4528nn0rei 9944 . . . . . . . . . . . . . 14  |-  if ( u  =  v ,  0 ,  1 )  e.  RR
4644, 45add20i 9284 . . . . . . . . . . . . 13  |-  ( ( 0  <_  if (
u  =  w ,  0 ,  1 )  /\  0  <_  if ( u  =  v ,  0 ,  1 ) )  ->  (
( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  <->  ( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 ) ) )
4742, 43, 46mp2an 656 . . . . . . . . . . . 12  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  <-> 
( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 ) )
48 equequ2 1830 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  w  ->  (
u  =  v  <->  u  =  w ) )
4948ifbid 3557 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  w  ->  if ( u  =  v ,  0 ,  1 )  =  if ( u  =  w ,  0 ,  1 ) )
5049eqeq1d 2266 . . . . . . . . . . . . . . . . 17  |-  ( v  =  w  ->  ( if ( u  =  v ,  0 ,  1 )  =  0  <->  if ( u  =  w ,  0 ,  1 )  =  0 ) )
5150, 48bibi12d 314 . . . . . . . . . . . . . . . 16  |-  ( v  =  w  ->  (
( if ( u  =  v ,  0 ,  1 )  =  0  <->  u  =  v
)  <->  ( if ( u  =  w ,  0 ,  1 )  =  0  <->  u  =  w ) ) )
52 equequ1 1829 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  u  ->  (
w  =  v  <->  u  =  v ) )
5352ifbid 3557 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  u  ->  if ( w  =  v ,  0 ,  1 )  =  if ( u  =  v ,  0 ,  1 ) )
5453eqeq1d 2266 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  u  ->  ( if ( w  =  v ,  0 ,  1 )  =  0  <->  if ( u  =  v ,  0 ,  1 )  =  0 ) )
5554, 52bibi12d 314 . . . . . . . . . . . . . . . . 17  |-  ( w  =  u  ->  (
( if ( w  =  v ,  0 ,  1 )  =  0  <->  w  =  v
)  <->  ( if ( u  =  v ,  0 ,  1 )  =  0  <->  u  =  v ) ) )
5655, 25chvarv 2062 . . . . . . . . . . . . . . . 16  |-  ( if ( u  =  v ,  0 ,  1 )  =  0  <->  u  =  v )
5751, 56chvarv 2062 . . . . . . . . . . . . . . 15  |-  ( if ( u  =  w ,  0 ,  1 )  =  0  <->  u  =  w )
58 eqtr2 2276 . . . . . . . . . . . . . . 15  |-  ( ( u  =  w  /\  u  =  v )  ->  w  =  v )
5957, 56, 58syl2anb 467 . . . . . . . . . . . . . 14  |-  ( ( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 )  ->  w  =  v )
6059, 24syl 17 . . . . . . . . . . . . 13  |-  ( ( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 )  ->  if ( w  =  v ,  0 ,  1 )  =  0 )
611leidi 9275 . . . . . . . . . . . . 13  |-  0  <_  0
6260, 61syl6eqbr 4034 . . . . . . . . . . . 12  |-  ( ( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 )  ->  if ( w  =  v ,  0 ,  1 )  <_  0 )
6347, 62sylbi 189 . . . . . . . . . . 11  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  ->  if ( w  =  v ,  0 ,  1 )  <_ 
0 )
64 id 21 . . . . . . . . . . 11  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  ->  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0 )
6563, 64breqtrrd 4023 . . . . . . . . . 10  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  ->  if ( w  =  v ,  0 ,  1 )  <_ 
( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
6641, 65jaoi 370 . . . . . . . . 9  |-  ( ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  \/  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0 )  ->  if ( w  =  v ,  0 ,  1 )  <_ 
( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
6731, 66mp1i 13 . . . . . . . 8  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  if ( w  =  v ,  0 ,  1 )  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
6816adantl 454 . . . . . . . 8  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
w D v )  =  if ( w  =  v ,  0 ,  1 ) )
69 eqeq12 2270 . . . . . . . . . . . 12  |-  ( ( x  =  u  /\  y  =  w )  ->  ( x  =  y  <-> 
u  =  w ) )
7069ifbid 3557 . . . . . . . . . . 11  |-  ( ( x  =  u  /\  y  =  w )  ->  if ( x  =  y ,  0 ,  1 )  =  if ( u  =  w ,  0 ,  1 ) )
7127elexi 2772 . . . . . . . . . . 11  |-  if ( u  =  w ,  0 ,  1 )  e.  _V
7270, 5, 71ovmpt2a 5912 . . . . . . . . . 10  |-  ( ( u  e.  X  /\  w  e.  X )  ->  ( u D w )  =  if ( u  =  w ,  0 ,  1 ) )
7372adantrr 700 . . . . . . . . 9  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
u D w )  =  if ( u  =  w ,  0 ,  1 ) )
74 eqeq12 2270 . . . . . . . . . . . 12  |-  ( ( x  =  u  /\  y  =  v )  ->  ( x  =  y  <-> 
u  =  v ) )
7574ifbid 3557 . . . . . . . . . . 11  |-  ( ( x  =  u  /\  y  =  v )  ->  if ( x  =  y ,  0 ,  1 )  =  if ( u  =  v ,  0 ,  1 ) )
7628elexi 2772 . . . . . . . . . . 11  |-  if ( u  =  v ,  0 ,  1 )  e.  _V
7775, 5, 76ovmpt2a 5912 . . . . . . . . . 10  |-  ( ( u  e.  X  /\  v  e.  X )  ->  ( u D v )  =  if ( u  =  v ,  0 ,  1 ) )
7877adantrl 699 . . . . . . . . 9  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
u D v )  =  if ( u  =  v ,  0 ,  1 ) )
7973, 78oveq12d 5810 . . . . . . . 8  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
( u D w )  +  ( u D v ) )  =  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
8067, 68, 793brtr4d 4027 . . . . . . 7  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
w D v )  <_  ( ( u D w )  +  ( u D v ) ) )
8180expcom 426 . . . . . 6  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( u  e.  X  ->  ( w D v )  <_  ( (
u D w )  +  ( u D v ) ) ) )
8281ralrimiv 2600 . . . . 5  |-  ( ( w  e.  X  /\  v  e.  X )  ->  A. u  e.  X  ( w D v )  <_  ( (
u D w )  +  ( u D v ) ) )
8326, 82jca 520 . . . 4  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( ( ( w D v )  =  0  <->  w  =  v
)  /\  A. u  e.  X  ( w D v )  <_ 
( ( u D w )  +  ( u D v ) ) ) )
8483rgen2a 2584 . . 3  |-  A. w  e.  X  A. v  e.  X  ( (
( w D v )  =  0  <->  w  =  v )  /\  A. u  e.  X  ( w D v )  <_  ( ( u D w )  +  ( u D v ) ) )
857, 84pm3.2i 443 . 2  |-  ( D : ( X  X.  X ) --> RR  /\  A. w  e.  X  A. v  e.  X  (
( ( w D v )  =  0  <-> 
w  =  v )  /\  A. u  e.  X  ( w D v )  <_  (
( u D w )  +  ( u D v ) ) ) )
86 ismet 17851 . 2  |-  ( X  e.  V  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. w  e.  X  A. v  e.  X  (
( ( w D v )  =  0  <-> 
w  =  v )  /\  A. u  e.  X  ( w D v )  <_  (
( u D w )  +  ( u D v ) ) ) ) ) )
8785, 86mpbiri 226 1  |-  ( X  e.  V  ->  D  e.  ( Met `  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   ifcif 3539   class class class wbr 3997    X. cxp 4659   -->wf 4669   ` cfv 4673  (class class class)co 5792    e. cmpt2 5794   RRcr 8704   0cc0 8705   1c1 8706    + caddc 8708    <_ cle 8836   NNcn 9714   NN0cn0 9933   Metcme 16333
This theorem is referenced by:  dscopn  18059
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-n 9715  df-n0 9934  df-met 16337
  Copyright terms: Public domain W3C validator