Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dva1dim Unicode version

Theorem dva1dim 30304
Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 
F whose trace is  P rather than  P itself;  F exists by cdlemf 29882. 
E is the division ring base by erngdv 30312, and  s `  F is the scalar product by dvavsca 30336. 
F must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.)
Hypotheses
Ref Expression
dva1dim.l  |-  .<_  =  ( le `  K )
dva1dim.h  |-  H  =  ( LHyp `  K
)
dva1dim.t  |-  T  =  ( ( LTrn `  K
) `  W )
dva1dim.r  |-  R  =  ( ( trL `  K
) `  W )
dva1dim.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
dva1dim  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  |  E. s  e.  E  g  =  ( s `  F ) }  =  { g  e.  T  |  ( R `  g )  .<_  ( R `
 F ) } )
Distinct variable groups:    .<_ , s    E, s    g, s, F    g, H, s    g, K, s    R, s    T, g, s   
g, W, s
Allowed substitution hints:    R( g)    E( g)   
.<_ ( g)

Proof of Theorem dva1dim
StepHypRef Expression
1 dva1dim.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
2 dva1dim.t . . . . . . . . . 10  |-  T  =  ( ( LTrn `  K
) `  W )
3 dva1dim.e . . . . . . . . . 10  |-  E  =  ( ( TEndo `  K
) `  W )
41, 2, 3tendocl 30086 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( s `  F )  e.  T
)
5 dva1dim.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
6 dva1dim.r . . . . . . . . . 10  |-  R  =  ( ( trL `  K
) `  W )
75, 1, 2, 6, 3tendotp 30080 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( R `  ( s `  F
) )  .<_  ( R `
 F ) )
84, 7jca 520 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( (
s `  F )  e.  T  /\  ( R `  ( s `  F ) )  .<_  ( R `  F ) ) )
983expb 1157 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  F  e.  T ) )  -> 
( ( s `  F )  e.  T  /\  ( R `  (
s `  F )
)  .<_  ( R `  F ) ) )
109anass1rs 785 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
( s `  F
)  e.  T  /\  ( R `  ( s `
 F ) ) 
.<_  ( R `  F
) ) )
11 eleq1 2316 . . . . . . 7  |-  ( g  =  ( s `  F )  ->  (
g  e.  T  <->  ( s `  F )  e.  T
) )
12 fveq2 5423 . . . . . . . 8  |-  ( g  =  ( s `  F )  ->  ( R `  g )  =  ( R `  ( s `  F
) ) )
1312breq1d 3973 . . . . . . 7  |-  ( g  =  ( s `  F )  ->  (
( R `  g
)  .<_  ( R `  F )  <->  ( R `  ( s `  F
) )  .<_  ( R `
 F ) ) )
1411, 13anbi12d 694 . . . . . 6  |-  ( g  =  ( s `  F )  ->  (
( g  e.  T  /\  ( R `  g
)  .<_  ( R `  F ) )  <->  ( (
s `  F )  e.  T  /\  ( R `  ( s `  F ) )  .<_  ( R `  F ) ) ) )
1510, 14syl5ibrcom 215 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
g  =  ( s `
 F )  -> 
( g  e.  T  /\  ( R `  g
)  .<_  ( R `  F ) ) ) )
1615rexlimdva 2638 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. s  e.  E  g  =  ( s `  F )  ->  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) ) )
17 simpll 733 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
18 simplr 734 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  ->  F  e.  T )
19 simprl 735 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  -> 
g  e.  T )
20 simprr 736 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  -> 
( R `  g
)  .<_  ( R `  F ) )
215, 1, 2, 6, 3tendoex 30294 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  g  e.  T )  /\  ( R `  g )  .<_  ( R `  F
) )  ->  E. s  e.  E  ( s `  F )  =  g )
2217, 18, 19, 20, 21syl121anc 1192 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  ->  E. s  e.  E  ( s `  F
)  =  g )
23 eqcom 2258 . . . . . . 7  |-  ( ( s `  F )  =  g  <->  g  =  ( s `  F
) )
2423rexbii 2539 . . . . . 6  |-  ( E. s  e.  E  ( s `  F )  =  g  <->  E. s  e.  E  g  =  ( s `  F
) )
2522, 24sylib 190 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  ->  E. s  e.  E  g  =  ( s `  F ) )
2625ex 425 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) )  ->  E. s  e.  E  g  =  ( s `  F
) ) )
2716, 26impbid 185 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. s  e.  E  g  =  ( s `  F )  <->  ( g  e.  T  /\  ( R `  g )  .<_  ( R `  F
) ) ) )
2827abbidv 2370 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  |  E. s  e.  E  g  =  ( s `  F ) }  =  { g  |  ( g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) } )
29 df-rab 2523 . 2  |-  { g  e.  T  |  ( R `  g ) 
.<_  ( R `  F
) }  =  {
g  |  ( g  e.  T  /\  ( R `  g )  .<_  ( R `  F
) ) }
3028, 29syl6eqr 2306 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  |  E. s  e.  E  g  =  ( s `  F ) }  =  { g  e.  T  |  ( R `  g )  .<_  ( R `
 F ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   {cab 2242   E.wrex 2517   {crab 2519   class class class wbr 3963   ` cfv 4638   lecple 13142   HLchlt 28670   LHypclh 29303   LTrncltrn 29420   trLctrl 29477   TEndoctendo 30071
This theorem is referenced by:  dvhb1dimN  30305  dia1dim  30381
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-map 6707  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-llines 28817  df-lplanes 28818  df-lvols 28819  df-lines 28820  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307  df-laut 29308  df-ldil 29423  df-ltrn 29424  df-trl 29478  df-tendo 30074
  Copyright terms: Public domain W3C validator