MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcj Structured version   Unicode version

Theorem dvcj 19836
Description: The derivative of the conjugate of a function. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvcj  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )

Proof of Theorem dvcj
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvf 19794 . . . . 5  |-  ( RR 
_D  ( *  o.  F ) ) : dom  ( RR  _D  ( *  o.  F
) ) --> CC
2 ffun 5593 . . . . 5  |-  ( ( RR  _D  ( *  o.  F ) ) : dom  ( RR 
_D  ( *  o.  F ) ) --> CC 
->  Fun  ( RR  _D  ( *  o.  F
) ) )
31, 2ax-mp 8 . . . 4  |-  Fun  ( RR  _D  ( *  o.  F ) )
4 simpll 731 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  F : X --> CC )
5 simplr 732 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  X  C_  RR )
6 simpr 448 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x  e.  dom  ( RR  _D  F ) )
74, 5, 6dvcjbr 19835 . . . 4  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x
( RR  _D  (
*  o.  F ) ) ( * `  ( ( RR  _D  F ) `  x
) ) )
8 funbrfv 5765 . . . 4  |-  ( Fun  ( RR  _D  (
*  o.  F ) )  ->  ( x
( RR  _D  (
*  o.  F ) ) ( * `  ( ( RR  _D  F ) `  x
) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `  x
) ) ) )
93, 7, 8mpsyl 61 . . 3  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `  x
) ) )
109mpteq2dva 4295 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  dom  ( RR  _D  F
)  |->  ( ( RR 
_D  ( *  o.  F ) ) `  x ) )  =  ( x  e.  dom  ( RR  _D  F
)  |->  ( * `  ( ( RR  _D  F ) `  x
) ) ) )
11 cjf 11909 . . . . . . . . . . . . 13  |-  * : CC --> CC
12 fco 5600 . . . . . . . . . . . . 13  |-  ( ( * : CC --> CC  /\  F : X --> CC )  ->  ( *  o.  F ) : X --> CC )
1311, 12mpan 652 . . . . . . . . . . . 12  |-  ( F : X --> CC  ->  ( *  o.  F ) : X --> CC )
1413ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
*  o.  F ) : X --> CC )
15 simplr 732 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  X  C_  RR )
16 simpr 448 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x  e.  dom  ( RR  _D  ( *  o.  F
) ) )
1714, 15, 16dvcjbr 19835 . . . . . . . . . 10  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x
( RR  _D  (
*  o.  ( *  o.  F ) ) ) ( * `  ( ( RR  _D  ( *  o.  F
) ) `  x
) ) )
18 vex 2959 . . . . . . . . . . 11  |-  x  e. 
_V
19 fvex 5742 . . . . . . . . . . 11  |-  ( * `
 ( ( RR 
_D  ( *  o.  F ) ) `  x ) )  e. 
_V
2018, 19breldm 5074 . . . . . . . . . 10  |-  ( x ( RR  _D  (
*  o.  ( *  o.  F ) ) ) ( * `  ( ( RR  _D  ( *  o.  F
) ) `  x
) )  ->  x  e.  dom  ( RR  _D  ( *  o.  (
*  o.  F ) ) ) )
2117, 20syl 16 . . . . . . . . 9  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x  e.  dom  ( RR  _D  ( *  o.  (
*  o.  F ) ) ) )
2221ex 424 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  dom  ( RR  _D  (
*  o.  F ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) ) ) )
2322ssrdv 3354 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  C_  dom  ( RR 
_D  ( *  o.  ( *  o.  F
) ) ) )
24 ffvelrn 5868 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  x  e.  X )  ->  ( F `  x
)  e.  CC )
2524adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( F `  x )  e.  CC )
2625cjcjd 12004 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( * `  ( * `  ( F `  x )
) )  =  ( F `  x ) )
2726mpteq2dva 4295 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  X  |->  ( * `  (
* `  ( F `  x ) ) ) )  =  ( x  e.  X  |->  ( F `
 x ) ) )
2825cjcld 12001 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( * `  ( F `  x
) )  e.  CC )
29 simpl 444 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : X --> CC )
3029feqmptd 5779 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
3111a1i 11 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  * : CC --> CC )
3231feqmptd 5779 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  *  =  ( y  e.  CC  |->  ( * `  y ) ) )
33 fveq2 5728 . . . . . . . . . . . 12  |-  ( y  =  ( F `  x )  ->  (
* `  y )  =  ( * `  ( F `  x ) ) )
3425, 30, 32, 33fmptco 5901 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
)  =  ( x  e.  X  |->  ( * `
 ( F `  x ) ) ) )
35 fveq2 5728 . . . . . . . . . . 11  |-  ( y  =  ( * `  ( F `  x ) )  ->  ( * `  y )  =  ( * `  ( * `
 ( F `  x ) ) ) )
3628, 34, 32, 35fmptco 5901 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  (
*  o.  F ) )  =  ( x  e.  X  |->  ( * `
 ( * `  ( F `  x ) ) ) ) )
3727, 36, 303eqtr4d 2478 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  (
*  o.  F ) )  =  F )
3837oveq2d 6097 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  ( *  o.  F ) ) )  =  ( RR 
_D  F ) )
3938dmeqd 5072 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) )  =  dom  ( RR  _D  F ) )
4023, 39sseqtrd 3384 . . . . . 6  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  C_  dom  ( RR 
_D  F ) )
41 fvex 5742 . . . . . . . . . 10  |-  ( * `
 ( ( RR 
_D  F ) `  x ) )  e. 
_V
4218, 41breldm 5074 . . . . . . . . 9  |-  ( x ( RR  _D  (
*  o.  F ) ) ( * `  ( ( RR  _D  F ) `  x
) )  ->  x  e.  dom  ( RR  _D  ( *  o.  F
) ) )
437, 42syl 16 . . . . . . . 8  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x  e.  dom  ( RR  _D  ( *  o.  F
) ) )
4443ex 424 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  dom  ( RR  _D  F
)  ->  x  e.  dom  ( RR  _D  (
*  o.  F ) ) ) )
4544ssrdv 3354 . . . . . 6  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  F
)  C_  dom  ( RR 
_D  ( *  o.  F ) ) )
4640, 45eqssd 3365 . . . . 5  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  =  dom  ( RR  _D  F ) )
4746feq2d 5581 . . . 4  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  (
*  o.  F ) ) --> CC  <->  ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  F
) --> CC ) )
481, 47mpbii 203 . . 3  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) ) : dom  ( RR  _D  F ) --> CC )
4948feqmptd 5779 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( x  e.  dom  ( RR 
_D  F )  |->  ( ( RR  _D  (
*  o.  F ) ) `  x ) ) )
50 dvf 19794 . . . . 5  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
5150ffvelrni 5869 . . . 4  |-  ( x  e.  dom  ( RR 
_D  F )  -> 
( ( RR  _D  F ) `  x
)  e.  CC )
5251adantl 453 . . 3  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  F
) `  x )  e.  CC )
5350a1i 11 . . . 4  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
5453feqmptd 5779 . . 3  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  F
)  =  ( x  e.  dom  ( RR 
_D  F )  |->  ( ( RR  _D  F
) `  x )
) )
55 fveq2 5728 . . 3  |-  ( y  =  ( ( RR 
_D  F ) `  x )  ->  (
* `  y )  =  ( * `  ( ( RR  _D  F ) `  x
) ) )
5652, 54, 32, 55fmptco 5901 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  ( RR  _D  F ) )  =  ( x  e. 
dom  ( RR  _D  F )  |->  ( * `
 ( ( RR 
_D  F ) `  x ) ) ) )
5710, 49, 563eqtr4d 2478 1  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    C_ wss 3320   class class class wbr 4212    e. cmpt 4266   dom cdm 4878    o. ccom 4882   Fun wfun 5448   -->wf 5450   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   *ccj 11901    _D cdv 19750
This theorem is referenced by:  dvfre  19837  dvmptcj  19854
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-icc 10923  df-fz 11044  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-plusg 13542  df-mulr 13543  df-starv 13544  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-rest 13650  df-topn 13651  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-cncf 18908  df-limc 19753  df-dv 19754
  Copyright terms: Public domain W3C validator