Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvconstbi Unicode version

Theorem dvconstbi 26904
Description: The derivative of a function on  S is zero iff it is a constant function. Roughly a biconditional  S analog of dvconst 19214 and dveq0 19295. Corresponds to integration formula " S. 0  _d x  =  C " in section 4.1 of [LarsonHostetlerEdwards] p. 278. (Contributed by Steve Rodriguez, 11-Nov-2015.)
Hypotheses
Ref Expression
dvconstbi.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvconstbi.y  |-  ( ph  ->  Y : S --> CC )
dvconstbi.dy  |-  ( ph  ->  dom  (  S  _D  Y )  =  S )
Assertion
Ref Expression
dvconstbi  |-  ( ph  ->  ( ( S  _D  Y )  =  ( S  X.  { 0 } )  <->  E. c  e.  CC  Y  =  ( S  X.  { c } ) ) )
Distinct variable groups:    S, c    Y, c
Allowed substitution hint:    ph( c)

Proof of Theorem dvconstbi
StepHypRef Expression
1 dvconstbi.y . . . . . . 7  |-  ( ph  ->  Y : S --> CC )
2 dvconstbi.s . . . . . . . . 9  |-  ( ph  ->  S  e.  { RR ,  CC } )
3 elpri 3620 . . . . . . . . 9  |-  ( S  e.  { RR ,  CC }  ->  ( S  =  RR  \/  S  =  CC ) )
42, 3syl 17 . . . . . . . 8  |-  ( ph  ->  ( S  =  RR  \/  S  =  CC ) )
5 0re 8792 . . . . . . . . . 10  |-  0  e.  RR
6 eleq2 2317 . . . . . . . . . 10  |-  ( S  =  RR  ->  (
0  e.  S  <->  0  e.  RR ) )
75, 6mpbiri 226 . . . . . . . . 9  |-  ( S  =  RR  ->  0  e.  S )
8 0cn 8785 . . . . . . . . . 10  |-  0  e.  CC
9 eleq2 2317 . . . . . . . . . 10  |-  ( S  =  CC  ->  (
0  e.  S  <->  0  e.  CC ) )
108, 9mpbiri 226 . . . . . . . . 9  |-  ( S  =  CC  ->  0  e.  S )
117, 10jaoi 370 . . . . . . . 8  |-  ( ( S  =  RR  \/  S  =  CC )  ->  0  e.  S )
124, 11syl 17 . . . . . . 7  |-  ( ph  ->  0  e.  S )
13 ffvelrn 5583 . . . . . . 7  |-  ( ( Y : S --> CC  /\  0  e.  S )  ->  ( Y `  0
)  e.  CC )
141, 12, 13syl2anc 645 . . . . . 6  |-  ( ph  ->  ( Y `  0
)  e.  CC )
1514adantr 453 . . . . 5  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
( Y `  0
)  e.  CC )
16 ffn 5313 . . . . . . . 8  |-  ( Y : S --> CC  ->  Y  Fn  S )
171, 16syl 17 . . . . . . 7  |-  ( ph  ->  Y  Fn  S )
1817adantr 453 . . . . . 6  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  Y  Fn  S )
19 fvex 5458 . . . . . . 7  |-  ( Y `
 0 )  e. 
_V
20 fnconstg 5353 . . . . . . 7  |-  ( ( Y `  0 )  e.  _V  ->  ( S  X.  { ( Y `
 0 ) } )  Fn  S )
2119, 20mp1i 13 . . . . . 6  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
( S  X.  {
( Y `  0
) } )  Fn  S )
2219fvconst2 5649 . . . . . . . 8  |-  ( y  e.  S  ->  (
( S  X.  {
( Y `  0
) } ) `  y )  =  ( Y `  0 ) )
2322adantl 454 . . . . . . 7  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  y  e.  S
)  ->  ( ( S  X.  { ( Y `
 0 ) } ) `  y )  =  ( Y ` 
0 ) )
24 eqid 2256 . . . . . . . . . . . . . . . . . . 19  |-  ( ( abs  o.  -  )  |`  ( S  X.  S
) )  =  ( ( abs  o.  -  )  |`  ( S  X.  S ) )
252, 24sblpnf 26892 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  0  e.  S )  ->  (
0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo )  =  S )
2612, 25mpdan 652 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo )  =  S )
2726eleq2d 2323 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( y  e.  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo ) 
<->  y  e.  S ) )
2827biimpar 473 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  S )  ->  y  e.  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo ) )
2912, 26eleqtrrd 2333 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  0  e.  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo ) )
302adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  S  e.  { RR ,  CC } )
31 ssid 3158 . . . . . . . . . . . . . . . . . . 19  |-  S  C_  S
3231a1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  S  C_  S )
331adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  Y : S --> CC )
3412adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
0  e.  S )
35 pnfxr 10408 . . . . . . . . . . . . . . . . . . 19  |-  +oo  e.  RR*
3635a1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  +oo  e.  RR* )
37 eqid 2256 . . . . . . . . . . . . . . . . . 18  |-  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo )  =  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo )
3826adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo )  =  S )
39 dvconstbi.dy . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  dom  (  S  _D  Y )  =  S )
4039adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  dom  (  S  _D  Y )  =  S )
4138, 40eqtr4d 2291 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo )  =  dom  (  S  _D  Y ) )
42 eqimss 3191 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo )  =  dom  (  S  _D  Y )  -> 
( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo )  C_  dom  (  S  _D  Y ) )
4341, 42syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo )  C_  dom  (  S  _D  Y ) )
445a1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
0  e.  RR )
4526eleq2d 2323 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( x  e.  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo ) 
<->  x  e.  S ) )
4645biimpa 472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo ) )  ->  x  e.  S
)
47463adant2 979 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  x  e.  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo ) )  ->  x  e.  S
)
48 fveq1 5443 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( S  _D  Y )  =  ( S  X.  { 0 } )  ->  ( ( S  _D  Y ) `  x )  =  ( ( S  X.  {
0 } ) `  x ) )
49 c0ex 8786 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  0  e.  _V
5049fvconst2 5649 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  S  ->  (
( S  X.  {
0 } ) `  x )  =  0 )
5148, 50sylan9eq 2308 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( S  _D  Y
)  =  ( S  X.  { 0 } )  /\  x  e.  S )  ->  (
( S  _D  Y
) `  x )  =  0 )
5251, 8syl6eqel 2344 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( S  _D  Y
)  =  ( S  X.  { 0 } )  /\  x  e.  S )  ->  (
( S  _D  Y
) `  x )  e.  CC )
5352abscld 11869 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( S  _D  Y
)  =  ( S  X.  { 0 } )  /\  x  e.  S )  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  e.  RR )
54 fveq2 5444 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( S  _D  Y
) `  x )  =  0  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  =  ( abs `  0
) )
55 abs0 11721 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( abs `  0 )  =  0
5654, 55syl6eq 2304 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( S  _D  Y
) `  x )  =  0  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  =  0 )
5751, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( S  _D  Y
)  =  ( S  X.  { 0 } )  /\  x  e.  S )  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  =  0 )
58 eqle 8877 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( abs `  (
( S  _D  Y
) `  x )
)  e.  RR  /\  ( abs `  ( ( S  _D  Y ) `
 x ) )  =  0 )  -> 
( abs `  (
( S  _D  Y
) `  x )
)  <_  0 )
5953, 57, 58syl2anc 645 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( S  _D  Y
)  =  ( S  X.  { 0 } )  /\  x  e.  S )  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  <_ 
0 )
60593adant1 978 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  x  e.  S )  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  <_ 
0 )
6147, 60syld3an3 1232 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  x  e.  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo ) )  ->  ( abs `  (
( S  _D  Y
) `  x )
)  <_  0 )
62613expa 1156 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  x  e.  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo ) )  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  <_ 
0 )
6330, 24, 32, 33, 34, 36, 37, 43, 44, 62dvlip2 19290 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  ( 0  e.  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo )  /\  y  e.  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo ) ) )  -> 
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  <_  ( 0  x.  ( abs `  (
0  -  y ) ) ) )
6429, 63sylanr1 636 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  ( ph  /\  y  e.  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo ) ) )  -> 
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  <_  ( 0  x.  ( abs `  (
0  -  y ) ) ) )
65643impdi 1242 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo ) )  ->  ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  <_  ( 0  x.  ( abs `  (
0  -  y ) ) ) )
6628, 65syl3an3 1222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  ( ph  /\  y  e.  S
) )  ->  ( abs `  ( ( Y `
 0 )  -  ( Y `  y ) ) )  <_  (
0  x.  ( abs `  ( 0  -  y
) ) ) )
67663expa 1156 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  ( ph  /\  y  e.  S )
)  ->  ( abs `  ( ( Y ` 
0 )  -  ( Y `  y )
) )  <_  (
0  x.  ( abs `  ( 0  -  y
) ) ) )
68673impdi 1242 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  ( abs `  ( ( Y `
 0 )  -  ( Y `  y ) ) )  <_  (
0  x.  ( abs `  ( 0  -  y
) ) ) )
69 recnprss 19202 . . . . . . . . . . . . . . . . . . 19  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
702, 69syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  S  C_  CC )
7170sseld 3140 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( y  e.  S  ->  y  e.  CC ) )
72 subcl 9005 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  CC  /\  y  e.  CC )  ->  ( 0  -  y
)  e.  CC )
7372abscld 11869 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
0  -  y ) )  e.  RR )
748, 73mpan 654 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  CC  ->  ( abs `  ( 0  -  y ) )  e.  RR )
7571, 74syl6 31 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( y  e.  S  ->  ( abs `  (
0  -  y ) )  e.  RR ) )
7675imp 420 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  ( 0  -  y ) )  e.  RR )
7776recnd 8815 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  ( 0  -  y ) )  e.  CC )
7877mul02d 8964 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  (
0  x.  ( abs `  ( 0  -  y
) ) )  =  0 )
79783adant2 979 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  (
0  x.  ( abs `  ( 0  -  y
) ) )  =  0 )
8068, 79breqtrd 4007 . . . . . . . . . . 11  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  ( abs `  ( ( Y `
 0 )  -  ( Y `  y ) ) )  <_  0
)
81 ffvelrn 5583 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Y : S --> CC  /\  y  e.  S )  ->  ( Y `  y
)  e.  CC )
8213, 81anim12dan 813 . . . . . . . . . . . . . . . . . 18  |-  ( ( Y : S --> CC  /\  ( 0  e.  S  /\  y  e.  S
) )  ->  (
( Y `  0
)  e.  CC  /\  ( Y `  y )  e.  CC ) )
831, 82sylan 459 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( 0  e.  S  /\  y  e.  S ) )  -> 
( ( Y ` 
0 )  e.  CC  /\  ( Y `  y
)  e.  CC ) )
84833impb 1152 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  0  e.  S  /\  y  e.  S
)  ->  ( ( Y `  0 )  e.  CC  /\  ( Y `
 y )  e.  CC ) )
8512, 84syl3an2 1221 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ph  /\  y  e.  S )  ->  (
( Y `  0
)  e.  CC  /\  ( Y `  y )  e.  CC ) )
86853anidm12 1244 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  S )  ->  (
( Y `  0
)  e.  CC  /\  ( Y `  y )  e.  CC ) )
87 subcl 9005 . . . . . . . . . . . . . 14  |-  ( ( ( Y `  0
)  e.  CC  /\  ( Y `  y )  e.  CC )  -> 
( ( Y ` 
0 )  -  ( Y `  y )
)  e.  CC )
8886, 87syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  (
( Y `  0
)  -  ( Y `
 y ) )  e.  CC )
8988absge0d 11877 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  0  <_  ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) ) )
90893adant2 979 . . . . . . . . . . 11  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  0  <_  ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) ) )
9188abscld 11869 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  ( ( Y `
 0 )  -  ( Y `  y ) ) )  e.  RR )
92 letri3 8861 . . . . . . . . . . . . 13  |-  ( ( ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  e.  RR  /\  0  e.  RR )  ->  ( ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  =  0  <->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  <_  0  /\  0  <_  ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) ) ) ) )
9391, 5, 92sylancl 646 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  =  0  <->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  <_  0  /\  0  <_  ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) ) ) ) )
94933adant2 979 . . . . . . . . . . 11  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  =  0  <->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  <_  0  /\  0  <_  ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) ) ) ) )
9580, 90, 94mpbir2and 893 . . . . . . . . . 10  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  ( abs `  ( ( Y `
 0 )  -  ( Y `  y ) ) )  =  0 )
96 abs00 11725 . . . . . . . . . . . 12  |-  ( ( ( Y `  0
)  -  ( Y `
 y ) )  e.  CC  ->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  =  0  <->  (
( Y `  0
)  -  ( Y `
 y ) )  =  0 ) )
9788, 96syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  =  0  <->  (
( Y `  0
)  -  ( Y `
 y ) )  =  0 ) )
98973adant2 979 . . . . . . . . . 10  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  =  0  <->  (
( Y `  0
)  -  ( Y `
 y ) )  =  0 ) )
9995, 98mpbid 203 . . . . . . . . 9  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  (
( Y `  0
)  -  ( Y `
 y ) )  =  0 )
100 subeq0 9027 . . . . . . . . . . 11  |-  ( ( ( Y `  0
)  e.  CC  /\  ( Y `  y )  e.  CC )  -> 
( ( ( Y `
 0 )  -  ( Y `  y ) )  =  0  <->  ( Y `  0 )  =  ( Y `  y ) ) )
10186, 100syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  S )  ->  (
( ( Y ` 
0 )  -  ( Y `  y )
)  =  0  <->  ( Y `  0 )  =  ( Y `  y ) ) )
1021013adant2 979 . . . . . . . . 9  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  (
( ( Y ` 
0 )  -  ( Y `  y )
)  =  0  <->  ( Y `  0 )  =  ( Y `  y ) ) )
10399, 102mpbid 203 . . . . . . . 8  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  ( Y `  0 )  =  ( Y `  y ) )
1041033expa 1156 . . . . . . 7  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  y  e.  S
)  ->  ( Y `  0 )  =  ( Y `  y
) )
10523, 104eqtr2d 2289 . . . . . 6  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  y  e.  S
)  ->  ( Y `  y )  =  ( ( S  X.  {
( Y `  0
) } ) `  y ) )
10618, 21, 105eqfnfvd 5545 . . . . 5  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  Y  =  ( S  X.  { ( Y ` 
0 ) } ) )
107 sneq 3611 . . . . . . . 8  |-  ( x  =  ( Y ` 
0 )  ->  { x }  =  { ( Y `  0 ) } )
108107xpeq2d 4687 . . . . . . 7  |-  ( x  =  ( Y ` 
0 )  ->  ( S  X.  { x }
)  =  ( S  X.  { ( Y `
 0 ) } ) )
109108eqeq2d 2267 . . . . . 6  |-  ( x  =  ( Y ` 
0 )  ->  ( Y  =  ( S  X.  { x } )  <-> 
Y  =  ( S  X.  { ( Y `
 0 ) } ) ) )
110109rcla4ev 2852 . . . . 5  |-  ( ( ( Y `  0
)  e.  CC  /\  Y  =  ( S  X.  { ( Y ` 
0 ) } ) )  ->  E. x  e.  CC  Y  =  ( S  X.  { x } ) )
11115, 106, 110syl2anc 645 . . . 4  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  E. x  e.  CC  Y  =  ( S  X.  { x } ) )
112111ex 425 . . 3  |-  ( ph  ->  ( ( S  _D  Y )  =  ( S  X.  { 0 } )  ->  E. x  e.  CC  Y  =  ( S  X.  { x } ) ) )
113 oveq2 5786 . . . . . 6  |-  ( Y  =  ( S  X.  { x } )  ->  ( S  _D  Y )  =  ( S  _D  ( S  X.  { x }
) ) )
1141133ad2ant3 983 . . . . 5  |-  ( (
ph  /\  x  e.  CC  /\  Y  =  ( S  X.  { x } ) )  -> 
( S  _D  Y
)  =  ( S  _D  ( S  X.  { x } ) ) )
115 dvsconst 26900 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  x  e.  CC )  ->  ( S  _D  ( S  X.  { x } ) )  =  ( S  X.  { 0 } ) )
1162, 115sylan 459 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( S  _D  ( S  X.  { x } ) )  =  ( S  X.  { 0 } ) )
1171163adant3 980 . . . . 5  |-  ( (
ph  /\  x  e.  CC  /\  Y  =  ( S  X.  { x } ) )  -> 
( S  _D  ( S  X.  { x }
) )  =  ( S  X.  { 0 } ) )
118114, 117eqtrd 2288 . . . 4  |-  ( (
ph  /\  x  e.  CC  /\  Y  =  ( S  X.  { x } ) )  -> 
( S  _D  Y
)  =  ( S  X.  { 0 } ) )
119118rexlimdv3a 2642 . . 3  |-  ( ph  ->  ( E. x  e.  CC  Y  =  ( S  X.  { x } )  ->  ( S  _D  Y )  =  ( S  X.  {
0 } ) ) )
120112, 119impbid 185 . 2  |-  ( ph  ->  ( ( S  _D  Y )  =  ( S  X.  { 0 } )  <->  E. x  e.  CC  Y  =  ( S  X.  { x } ) ) )
121 sneq 3611 . . . . 5  |-  ( c  =  x  ->  { c }  =  { x } )
122121xpeq2d 4687 . . . 4  |-  ( c  =  x  ->  ( S  X.  { c } )  =  ( S  X.  { x }
) )
123122eqeq2d 2267 . . 3  |-  ( c  =  x  ->  ( Y  =  ( S  X.  { c } )  <-> 
Y  =  ( S  X.  { x }
) ) )
124123cbvrexv 2735 . 2  |-  ( E. c  e.  CC  Y  =  ( S  X.  { c } )  <->  E. x  e.  CC  Y  =  ( S  X.  { x } ) )
125120, 124syl6bbr 256 1  |-  ( ph  ->  ( ( S  _D  Y )  =  ( S  X.  { 0 } )  <->  E. c  e.  CC  Y  =  ( S  X.  { c } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   E.wrex 2517   _Vcvv 2757    C_ wss 3113   {csn 3600   {cpr 3601   class class class wbr 3983    X. cxp 4645   dom cdm 4647    |` cres 4649    o. ccom 4651    Fn wfn 4654   -->wf 4655   ` cfv 4659  (class class class)co 5778   CCcc 8689   RRcr 8690   0cc0 8691    x. cmul 8696    +oocpnf 8818   RR*cxr 8820    <_ cle 8822    - cmin 8991   abscabs 11670   ballcbl 16319    _D cdv 19161
This theorem is referenced by:  expgrowth  26905
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769  ax-addf 8770  ax-mulf 8771
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-se 4311  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-of 5998  df-1st 6042  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-1o 6433  df-2o 6434  df-oadd 6437  df-er 6614  df-map 6728  df-pm 6729  df-ixp 6772  df-en 6818  df-dom 6819  df-sdom 6820  df-fin 6821  df-fi 7119  df-sup 7148  df-oi 7179  df-card 7526  df-cda 7748  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-4 9760  df-5 9761  df-6 9762  df-7 9763  df-8 9764  df-9 9765  df-10 9766  df-n0 9919  df-z 9978  df-dec 10078  df-uz 10184  df-q 10270  df-rp 10308  df-xneg 10405  df-xadd 10406  df-xmul 10407  df-ioo 10612  df-ico 10614  df-icc 10615  df-fz 10735  df-fzo 10823  df-seq 10999  df-exp 11057  df-hash 11290  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-struct 13098  df-ndx 13099  df-slot 13100  df-base 13101  df-sets 13102  df-ress 13103  df-plusg 13169  df-mulr 13170  df-starv 13171  df-sca 13172  df-vsca 13173  df-tset 13175  df-ple 13176  df-ds 13178  df-hom 13180  df-cco 13181  df-rest 13275  df-topn 13276  df-topgen 13292  df-pt 13293  df-prds 13296  df-xrs 13351  df-0g 13352  df-gsum 13353  df-qtop 13358  df-imas 13359  df-xps 13361  df-mre 13436  df-mrc 13437  df-acs 13439  df-mnd 14315  df-submnd 14364  df-mulg 14440  df-cntz 14741  df-cmn 15039  df-xmet 16321  df-met 16322  df-bl 16323  df-mopn 16324  df-cnfld 16326  df-top 16584  df-bases 16586  df-topon 16587  df-topsp 16588  df-cld 16704  df-ntr 16705  df-cls 16706  df-nei 16783  df-lp 16816  df-perf 16817  df-cn 16905  df-cnp 16906  df-haus 16991  df-cmp 17062  df-tx 17205  df-hmeo 17394  df-fbas 17468  df-fg 17469  df-fil 17489  df-fm 17581  df-flim 17582  df-flf 17583  df-xms 17833  df-ms 17834  df-tms 17835  df-cncf 18330  df-limc 19164  df-dv 19165
  Copyright terms: Public domain W3C validator