Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvconstbi Unicode version

Theorem dvconstbi 26883
Description: The derivative of a function on  S is zero iff it is a constant function. Roughly a biconditional  S analog of dvconst 19193 and dveq0 19274. Corresponds to integration formula " S. 0  _d x  =  C " in section 4.1 of [LarsonHostetlerEdwards] p. 278. (Contributed by Steve Rodriguez, 11-Nov-2015.)
Hypotheses
Ref Expression
dvconstbi.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvconstbi.y  |-  ( ph  ->  Y : S --> CC )
dvconstbi.dy  |-  ( ph  ->  dom  (  S  _D  Y )  =  S )
Assertion
Ref Expression
dvconstbi  |-  ( ph  ->  ( ( S  _D  Y )  =  ( S  X.  { 0 } )  <->  E. c  e.  CC  Y  =  ( S  X.  { c } ) ) )
Distinct variable groups:    S, c    Y, c
Allowed substitution hint:    ph( c)

Proof of Theorem dvconstbi
StepHypRef Expression
1 dvconstbi.y . . . . . . 7  |-  ( ph  ->  Y : S --> CC )
2 dvconstbi.s . . . . . . . . 9  |-  ( ph  ->  S  e.  { RR ,  CC } )
3 elpri 3601 . . . . . . . . 9  |-  ( S  e.  { RR ,  CC }  ->  ( S  =  RR  \/  S  =  CC ) )
42, 3syl 17 . . . . . . . 8  |-  ( ph  ->  ( S  =  RR  \/  S  =  CC ) )
5 0re 8771 . . . . . . . . . 10  |-  0  e.  RR
6 eleq2 2317 . . . . . . . . . 10  |-  ( S  =  RR  ->  (
0  e.  S  <->  0  e.  RR ) )
75, 6mpbiri 226 . . . . . . . . 9  |-  ( S  =  RR  ->  0  e.  S )
8 0cn 8764 . . . . . . . . . 10  |-  0  e.  CC
9 eleq2 2317 . . . . . . . . . 10  |-  ( S  =  CC  ->  (
0  e.  S  <->  0  e.  CC ) )
108, 9mpbiri 226 . . . . . . . . 9  |-  ( S  =  CC  ->  0  e.  S )
117, 10jaoi 370 . . . . . . . 8  |-  ( ( S  =  RR  \/  S  =  CC )  ->  0  e.  S )
124, 11syl 17 . . . . . . 7  |-  ( ph  ->  0  e.  S )
13 ffvelrn 5562 . . . . . . 7  |-  ( ( Y : S --> CC  /\  0  e.  S )  ->  ( Y `  0
)  e.  CC )
141, 12, 13syl2anc 645 . . . . . 6  |-  ( ph  ->  ( Y `  0
)  e.  CC )
1514adantr 453 . . . . 5  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
( Y `  0
)  e.  CC )
16 ffn 5292 . . . . . . . 8  |-  ( Y : S --> CC  ->  Y  Fn  S )
171, 16syl 17 . . . . . . 7  |-  ( ph  ->  Y  Fn  S )
1817adantr 453 . . . . . 6  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  Y  Fn  S )
19 fvex 5437 . . . . . . 7  |-  ( Y `
 0 )  e. 
_V
20 fnconstg 5332 . . . . . . 7  |-  ( ( Y `  0 )  e.  _V  ->  ( S  X.  { ( Y `
 0 ) } )  Fn  S )
2119, 20mp1i 13 . . . . . 6  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
( S  X.  {
( Y `  0
) } )  Fn  S )
2219fvconst2 5628 . . . . . . . 8  |-  ( y  e.  S  ->  (
( S  X.  {
( Y `  0
) } ) `  y )  =  ( Y `  0 ) )
2322adantl 454 . . . . . . 7  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  y  e.  S
)  ->  ( ( S  X.  { ( Y `
 0 ) } ) `  y )  =  ( Y ` 
0 ) )
24 eqid 2256 . . . . . . . . . . . . . . . . . . 19  |-  ( ( abs  o.  -  )  |`  ( S  X.  S
) )  =  ( ( abs  o.  -  )  |`  ( S  X.  S ) )
252, 24sblpnf 26871 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  0  e.  S )  ->  (
0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo )  =  S )
2612, 25mpdan 652 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo )  =  S )
2726eleq2d 2323 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( y  e.  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo ) 
<->  y  e.  S ) )
2827biimpar 473 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  S )  ->  y  e.  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo ) )
2912, 26eleqtrrd 2333 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  0  e.  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo ) )
302adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  S  e.  { RR ,  CC } )
31 ssid 3139 . . . . . . . . . . . . . . . . . . 19  |-  S  C_  S
3231a1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  S  C_  S )
331adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  Y : S --> CC )
3412adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
0  e.  S )
35 pnfxr 10387 . . . . . . . . . . . . . . . . . . 19  |-  +oo  e.  RR*
3635a1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  +oo  e.  RR* )
37 eqid 2256 . . . . . . . . . . . . . . . . . 18  |-  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo )  =  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo )
3826adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo )  =  S )
39 dvconstbi.dy . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  dom  (  S  _D  Y )  =  S )
4039adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  dom  (  S  _D  Y )  =  S )
4138, 40eqtr4d 2291 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo )  =  dom  (  S  _D  Y ) )
42 eqimss 3172 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo )  =  dom  (  S  _D  Y )  -> 
( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo )  C_  dom  (  S  _D  Y ) )
4341, 42syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo )  C_  dom  (  S  _D  Y ) )
445a1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  -> 
0  e.  RR )
4526eleq2d 2323 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( x  e.  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo ) 
<->  x  e.  S ) )
4645biimpa 472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo ) )  ->  x  e.  S
)
47463adant2 979 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  x  e.  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo ) )  ->  x  e.  S
)
48 fveq1 5422 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( S  _D  Y )  =  ( S  X.  { 0 } )  ->  ( ( S  _D  Y ) `  x )  =  ( ( S  X.  {
0 } ) `  x ) )
49 c0ex 8765 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  0  e.  _V
5049fvconst2 5628 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  S  ->  (
( S  X.  {
0 } ) `  x )  =  0 )
5148, 50sylan9eq 2308 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( S  _D  Y
)  =  ( S  X.  { 0 } )  /\  x  e.  S )  ->  (
( S  _D  Y
) `  x )  =  0 )
5251, 8syl6eqel 2344 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( S  _D  Y
)  =  ( S  X.  { 0 } )  /\  x  e.  S )  ->  (
( S  _D  Y
) `  x )  e.  CC )
5352abscld 11848 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( S  _D  Y
)  =  ( S  X.  { 0 } )  /\  x  e.  S )  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  e.  RR )
54 fveq2 5423 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( S  _D  Y
) `  x )  =  0  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  =  ( abs `  0
) )
55 abs0 11700 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( abs `  0 )  =  0
5654, 55syl6eq 2304 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( S  _D  Y
) `  x )  =  0  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  =  0 )
5751, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( S  _D  Y
)  =  ( S  X.  { 0 } )  /\  x  e.  S )  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  =  0 )
58 eqle 8856 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( abs `  (
( S  _D  Y
) `  x )
)  e.  RR  /\  ( abs `  ( ( S  _D  Y ) `
 x ) )  =  0 )  -> 
( abs `  (
( S  _D  Y
) `  x )
)  <_  0 )
5953, 57, 58syl2anc 645 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( S  _D  Y
)  =  ( S  X.  { 0 } )  /\  x  e.  S )  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  <_ 
0 )
60593adant1 978 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  x  e.  S )  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  <_ 
0 )
6147, 60syld3an3 1232 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  x  e.  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo ) )  ->  ( abs `  (
( S  _D  Y
) `  x )
)  <_  0 )
62613expa 1156 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  x  e.  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo ) )  ->  ( abs `  ( ( S  _D  Y ) `  x ) )  <_ 
0 )
6330, 24, 32, 33, 34, 36, 37, 43, 44, 62dvlip2 19269 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  ( 0  e.  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo )  /\  y  e.  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo ) ) )  -> 
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  <_  ( 0  x.  ( abs `  (
0  -  y ) ) ) )
6429, 63sylanr1 636 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  ( ph  /\  y  e.  ( 0 ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) )  +oo ) ) )  -> 
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  <_  ( 0  x.  ( abs `  (
0  -  y ) ) ) )
65643impdi 1242 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  ( 0 ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  +oo ) )  ->  ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  <_  ( 0  x.  ( abs `  (
0  -  y ) ) ) )
6628, 65syl3an3 1222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  ( ph  /\  y  e.  S
) )  ->  ( abs `  ( ( Y `
 0 )  -  ( Y `  y ) ) )  <_  (
0  x.  ( abs `  ( 0  -  y
) ) ) )
67663expa 1156 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  ( ph  /\  y  e.  S )
)  ->  ( abs `  ( ( Y ` 
0 )  -  ( Y `  y )
) )  <_  (
0  x.  ( abs `  ( 0  -  y
) ) ) )
68673impdi 1242 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  ( abs `  ( ( Y `
 0 )  -  ( Y `  y ) ) )  <_  (
0  x.  ( abs `  ( 0  -  y
) ) ) )
69 recnprss 19181 . . . . . . . . . . . . . . . . . . 19  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
702, 69syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  S  C_  CC )
7170sseld 3121 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( y  e.  S  ->  y  e.  CC ) )
72 subcl 8984 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  CC  /\  y  e.  CC )  ->  ( 0  -  y
)  e.  CC )
7372abscld 11848 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
0  -  y ) )  e.  RR )
748, 73mpan 654 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  CC  ->  ( abs `  ( 0  -  y ) )  e.  RR )
7571, 74syl6 31 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( y  e.  S  ->  ( abs `  (
0  -  y ) )  e.  RR ) )
7675imp 420 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  ( 0  -  y ) )  e.  RR )
7776recnd 8794 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  ( 0  -  y ) )  e.  CC )
7877mul02d 8943 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  (
0  x.  ( abs `  ( 0  -  y
) ) )  =  0 )
79783adant2 979 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  (
0  x.  ( abs `  ( 0  -  y
) ) )  =  0 )
8068, 79breqtrd 3987 . . . . . . . . . . 11  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  ( abs `  ( ( Y `
 0 )  -  ( Y `  y ) ) )  <_  0
)
81 ffvelrn 5562 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Y : S --> CC  /\  y  e.  S )  ->  ( Y `  y
)  e.  CC )
8213, 81anim12dan 813 . . . . . . . . . . . . . . . . . 18  |-  ( ( Y : S --> CC  /\  ( 0  e.  S  /\  y  e.  S
) )  ->  (
( Y `  0
)  e.  CC  /\  ( Y `  y )  e.  CC ) )
831, 82sylan 459 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( 0  e.  S  /\  y  e.  S ) )  -> 
( ( Y ` 
0 )  e.  CC  /\  ( Y `  y
)  e.  CC ) )
84833impb 1152 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  0  e.  S  /\  y  e.  S
)  ->  ( ( Y `  0 )  e.  CC  /\  ( Y `
 y )  e.  CC ) )
8512, 84syl3an2 1221 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ph  /\  y  e.  S )  ->  (
( Y `  0
)  e.  CC  /\  ( Y `  y )  e.  CC ) )
86853anidm12 1244 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  S )  ->  (
( Y `  0
)  e.  CC  /\  ( Y `  y )  e.  CC ) )
87 subcl 8984 . . . . . . . . . . . . . 14  |-  ( ( ( Y `  0
)  e.  CC  /\  ( Y `  y )  e.  CC )  -> 
( ( Y ` 
0 )  -  ( Y `  y )
)  e.  CC )
8886, 87syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  (
( Y `  0
)  -  ( Y `
 y ) )  e.  CC )
8988absge0d 11856 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  0  <_  ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) ) )
90893adant2 979 . . . . . . . . . . 11  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  0  <_  ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) ) )
9188abscld 11848 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  ( ( Y `
 0 )  -  ( Y `  y ) ) )  e.  RR )
92 letri3 8840 . . . . . . . . . . . . 13  |-  ( ( ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  e.  RR  /\  0  e.  RR )  ->  ( ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  =  0  <->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  <_  0  /\  0  <_  ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) ) ) ) )
9391, 5, 92sylancl 646 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  =  0  <->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  <_  0  /\  0  <_  ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) ) ) ) )
94933adant2 979 . . . . . . . . . . 11  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  =  0  <->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  <_  0  /\  0  <_  ( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) ) ) ) )
9580, 90, 94mpbir2and 893 . . . . . . . . . 10  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  ( abs `  ( ( Y `
 0 )  -  ( Y `  y ) ) )  =  0 )
96 abs00 11704 . . . . . . . . . . . 12  |-  ( ( ( Y `  0
)  -  ( Y `
 y ) )  e.  CC  ->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  =  0  <->  (
( Y `  0
)  -  ( Y `
 y ) )  =  0 ) )
9788, 96syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  =  0  <->  (
( Y `  0
)  -  ( Y `
 y ) )  =  0 ) )
98973adant2 979 . . . . . . . . . 10  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  (
( abs `  (
( Y `  0
)  -  ( Y `
 y ) ) )  =  0  <->  (
( Y `  0
)  -  ( Y `
 y ) )  =  0 ) )
9995, 98mpbid 203 . . . . . . . . 9  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  (
( Y `  0
)  -  ( Y `
 y ) )  =  0 )
100 subeq0 9006 . . . . . . . . . . 11  |-  ( ( ( Y `  0
)  e.  CC  /\  ( Y `  y )  e.  CC )  -> 
( ( ( Y `
 0 )  -  ( Y `  y ) )  =  0  <->  ( Y `  0 )  =  ( Y `  y ) ) )
10186, 100syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  S )  ->  (
( ( Y ` 
0 )  -  ( Y `  y )
)  =  0  <->  ( Y `  0 )  =  ( Y `  y ) ) )
1021013adant2 979 . . . . . . . . 9  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  (
( ( Y ` 
0 )  -  ( Y `  y )
)  =  0  <->  ( Y `  0 )  =  ( Y `  y ) ) )
10399, 102mpbid 203 . . . . . . . 8  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } )  /\  y  e.  S )  ->  ( Y `  0 )  =  ( Y `  y ) )
1041033expa 1156 . . . . . . 7  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  y  e.  S
)  ->  ( Y `  0 )  =  ( Y `  y
) )
10523, 104eqtr2d 2289 . . . . . 6  |-  ( ( ( ph  /\  ( S  _D  Y )  =  ( S  X.  {
0 } ) )  /\  y  e.  S
)  ->  ( Y `  y )  =  ( ( S  X.  {
( Y `  0
) } ) `  y ) )
10618, 21, 105eqfnfvd 5524 . . . . 5  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  Y  =  ( S  X.  { ( Y ` 
0 ) } ) )
107 sneq 3592 . . . . . . . 8  |-  ( x  =  ( Y ` 
0 )  ->  { x }  =  { ( Y `  0 ) } )
108107xpeq2d 4666 . . . . . . 7  |-  ( x  =  ( Y ` 
0 )  ->  ( S  X.  { x }
)  =  ( S  X.  { ( Y `
 0 ) } ) )
109108eqeq2d 2267 . . . . . 6  |-  ( x  =  ( Y ` 
0 )  ->  ( Y  =  ( S  X.  { x } )  <-> 
Y  =  ( S  X.  { ( Y `
 0 ) } ) ) )
110109rcla4ev 2835 . . . . 5  |-  ( ( ( Y `  0
)  e.  CC  /\  Y  =  ( S  X.  { ( Y ` 
0 ) } ) )  ->  E. x  e.  CC  Y  =  ( S  X.  { x } ) )
11115, 106, 110syl2anc 645 . . . 4  |-  ( (
ph  /\  ( S  _D  Y )  =  ( S  X.  { 0 } ) )  ->  E. x  e.  CC  Y  =  ( S  X.  { x } ) )
112111ex 425 . . 3  |-  ( ph  ->  ( ( S  _D  Y )  =  ( S  X.  { 0 } )  ->  E. x  e.  CC  Y  =  ( S  X.  { x } ) ) )
113 oveq2 5765 . . . . . 6  |-  ( Y  =  ( S  X.  { x } )  ->  ( S  _D  Y )  =  ( S  _D  ( S  X.  { x }
) ) )
1141133ad2ant3 983 . . . . 5  |-  ( (
ph  /\  x  e.  CC  /\  Y  =  ( S  X.  { x } ) )  -> 
( S  _D  Y
)  =  ( S  _D  ( S  X.  { x } ) ) )
115 dvsconst 26879 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  x  e.  CC )  ->  ( S  _D  ( S  X.  { x } ) )  =  ( S  X.  { 0 } ) )
1162, 115sylan 459 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( S  _D  ( S  X.  { x } ) )  =  ( S  X.  { 0 } ) )
1171163adant3 980 . . . . 5  |-  ( (
ph  /\  x  e.  CC  /\  Y  =  ( S  X.  { x } ) )  -> 
( S  _D  ( S  X.  { x }
) )  =  ( S  X.  { 0 } ) )
118114, 117eqtrd 2288 . . . 4  |-  ( (
ph  /\  x  e.  CC  /\  Y  =  ( S  X.  { x } ) )  -> 
( S  _D  Y
)  =  ( S  X.  { 0 } ) )
119118rexlimdv3a 2640 . . 3  |-  ( ph  ->  ( E. x  e.  CC  Y  =  ( S  X.  { x } )  ->  ( S  _D  Y )  =  ( S  X.  {
0 } ) ) )
120112, 119impbid 185 . 2  |-  ( ph  ->  ( ( S  _D  Y )  =  ( S  X.  { 0 } )  <->  E. x  e.  CC  Y  =  ( S  X.  { x } ) ) )
121 sneq 3592 . . . . 5  |-  ( c  =  x  ->  { c }  =  { x } )
122121xpeq2d 4666 . . . 4  |-  ( c  =  x  ->  ( S  X.  { c } )  =  ( S  X.  { x }
) )
123122eqeq2d 2267 . . 3  |-  ( c  =  x  ->  ( Y  =  ( S  X.  { c } )  <-> 
Y  =  ( S  X.  { x }
) ) )
124123cbvrexv 2718 . 2  |-  ( E. c  e.  CC  Y  =  ( S  X.  { c } )  <->  E. x  e.  CC  Y  =  ( S  X.  { x } ) )
125120, 124syl6bbr 256 1  |-  ( ph  ->  ( ( S  _D  Y )  =  ( S  X.  { 0 } )  <->  E. c  e.  CC  Y  =  ( S  X.  { c } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   E.wrex 2517   _Vcvv 2740    C_ wss 3094   {csn 3581   {cpr 3582   class class class wbr 3963    X. cxp 4624   dom cdm 4626    |` cres 4628    o. ccom 4630    Fn wfn 4633   -->wf 4634   ` cfv 4638  (class class class)co 5757   CCcc 8668   RRcr 8669   0cc0 8670    x. cmul 8675    +oocpnf 8797   RR*cxr 8799    <_ cle 8801    - cmin 8970   abscabs 11649   ballcbl 16298    _D cdv 19140
This theorem is referenced by:  expgrowth  26884
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-er 6593  df-map 6707  df-pm 6708  df-ixp 6751  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-fi 7098  df-sup 7127  df-oi 7158  df-card 7505  df-cda 7727  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-ioo 10591  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-seq 10978  df-exp 11036  df-hash 11269  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-hom 13159  df-cco 13160  df-rest 13254  df-topn 13255  df-topgen 13271  df-pt 13272  df-prds 13275  df-xrs 13330  df-0g 13331  df-gsum 13332  df-qtop 13337  df-imas 13338  df-xps 13340  df-mre 13415  df-mrc 13416  df-acs 13418  df-mnd 14294  df-submnd 14343  df-mulg 14419  df-cntz 14720  df-cmn 15018  df-xmet 16300  df-met 16301  df-bl 16302  df-mopn 16303  df-cnfld 16305  df-top 16563  df-bases 16565  df-topon 16566  df-topsp 16567  df-cld 16683  df-ntr 16684  df-cls 16685  df-nei 16762  df-lp 16795  df-perf 16796  df-cn 16884  df-cnp 16885  df-haus 16970  df-cmp 17041  df-tx 17184  df-hmeo 17373  df-fbas 17447  df-fg 17448  df-fil 17468  df-fm 17560  df-flim 17561  df-flf 17562  df-xms 17812  df-ms 17813  df-tms 17814  df-cncf 18309  df-limc 19143  df-dv 19144
  Copyright terms: Public domain W3C validator