MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrpropd Structured version   Unicode version

Theorem dvdsrpropd 15839
Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
rngidpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
rngidpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
rngidpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
dvdsrpropd  |-  ( ph  ->  ( ||r `
 K )  =  ( ||r `
 L ) )
Distinct variable groups:    x, y, B    x, K, y    x, L, y    ph, x, y

Proof of Theorem dvdsrpropd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 rngidpropd.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
21anassrs 631 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  B )  ->  (
x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )
32eqeq1d 2451 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  B )  ->  (
( x ( .r
`  K ) y )  =  z  <->  ( x
( .r `  L
) y )  =  z ) )
43an32s 781 . . . . . 6  |-  ( ( ( ph  /\  y  e.  B )  /\  x  e.  B )  ->  (
( x ( .r
`  K ) y )  =  z  <->  ( x
( .r `  L
) y )  =  z ) )
54rexbidva 2729 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  ( E. x  e.  B  ( x ( .r
`  K ) y )  =  z  <->  E. x  e.  B  ( x
( .r `  L
) y )  =  z ) )
65pm5.32da 624 . . . 4  |-  ( ph  ->  ( ( y  e.  B  /\  E. x  e.  B  ( x
( .r `  K
) y )  =  z )  <->  ( y  e.  B  /\  E. x  e.  B  ( x
( .r `  L
) y )  =  z ) ) )
7 rngidpropd.1 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  K ) )
87eleq2d 2510 . . . . 5  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  K
) ) )
97rexeqdv 2918 . . . . 5  |-  ( ph  ->  ( E. x  e.  B  ( x ( .r `  K ) y )  =  z  <->  E. x  e.  ( Base `  K ) ( x ( .r `  K ) y )  =  z ) )
108, 9anbi12d 693 . . . 4  |-  ( ph  ->  ( ( y  e.  B  /\  E. x  e.  B  ( x
( .r `  K
) y )  =  z )  <->  ( y  e.  ( Base `  K
)  /\  E. x  e.  ( Base `  K
) ( x ( .r `  K ) y )  =  z ) ) )
11 rngidpropd.2 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
1211eleq2d 2510 . . . . 5  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  L
) ) )
1311rexeqdv 2918 . . . . 5  |-  ( ph  ->  ( E. x  e.  B  ( x ( .r `  L ) y )  =  z  <->  E. x  e.  ( Base `  L ) ( x ( .r `  L ) y )  =  z ) )
1412, 13anbi12d 693 . . . 4  |-  ( ph  ->  ( ( y  e.  B  /\  E. x  e.  B  ( x
( .r `  L
) y )  =  z )  <->  ( y  e.  ( Base `  L
)  /\  E. x  e.  ( Base `  L
) ( x ( .r `  L ) y )  =  z ) ) )
156, 10, 143bitr3d 276 . . 3  |-  ( ph  ->  ( ( y  e.  ( Base `  K
)  /\  E. x  e.  ( Base `  K
) ( x ( .r `  K ) y )  =  z )  <->  ( y  e.  ( Base `  L
)  /\  E. x  e.  ( Base `  L
) ( x ( .r `  L ) y )  =  z ) ) )
1615opabbidv 4302 . 2  |-  ( ph  ->  { <. y ,  z
>.  |  ( y  e.  ( Base `  K
)  /\  E. x  e.  ( Base `  K
) ( x ( .r `  K ) y )  =  z ) }  =  { <. y ,  z >.  |  ( y  e.  ( Base `  L
)  /\  E. x  e.  ( Base `  L
) ( x ( .r `  L ) y )  =  z ) } )
17 eqid 2443 . . 3  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2443 . . 3  |-  ( ||r `  K
)  =  ( ||r `  K
)
19 eqid 2443 . . 3  |-  ( .r
`  K )  =  ( .r `  K
)
2017, 18, 19dvdsrval 15788 . 2  |-  ( ||r `  K
)  =  { <. y ,  z >.  |  ( y  e.  ( Base `  K )  /\  E. x  e.  ( Base `  K ) ( x ( .r `  K
) y )  =  z ) }
21 eqid 2443 . . 3  |-  ( Base `  L )  =  (
Base `  L )
22 eqid 2443 . . 3  |-  ( ||r `  L
)  =  ( ||r `  L
)
23 eqid 2443 . . 3  |-  ( .r
`  L )  =  ( .r `  L
)
2421, 22, 23dvdsrval 15788 . 2  |-  ( ||r `  L
)  =  { <. y ,  z >.  |  ( y  e.  ( Base `  L )  /\  E. x  e.  ( Base `  L ) ( x ( .r `  L
) y )  =  z ) }
2516, 20, 243eqtr4g 2500 1  |-  ( ph  ->  ( ||r `
 K )  =  ( ||r `
 L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1654    e. wcel 1728   E.wrex 2713   {copab 4296   ` cfv 5489  (class class class)co 6117   Basecbs 13507   .rcmulr 13568   ||rcdsr 15781
This theorem is referenced by:  unitpropd  15840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2717  df-rex 2718  df-reu 2719  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-op 3852  df-uni 4045  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-id 4533  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-dvdsr 15784
  Copyright terms: Public domain W3C validator