MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfval Unicode version

Theorem dvfval 19247
Description: Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
dvval.t  |-  T  =  ( Kt  S )
dvval.k  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
dvfval  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) ) )
Distinct variable groups:    x, z, A    x, F, z    x, K, z    x, S, z   
x, T
Allowed substitution hint:    T( z)

Proof of Theorem dvfval
Dummy variables  f 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dv 19217 . . . 4  |-  _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s ) 
|->  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
21a1i 10 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  _D  =  ( s  e. 
~P CC ,  f  e.  ( CC  ^pm  s )  |->  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) ) )
3 dvval.k . . . . . . . 8  |-  K  =  ( TopOpen ` fld )
43oveq1i 5868 . . . . . . 7  |-  ( Kt  s )  =  ( (
TopOpen ` fld )t  s )
5 simprl 732 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  s  =  S )
65oveq2d 5874 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( Kt  s )  =  ( Kt  S ) )
7 dvval.t . . . . . . . 8  |-  T  =  ( Kt  S )
86, 7syl6eqr 2333 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( Kt  s )  =  T )
94, 8syl5eqr 2329 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( TopOpen ` fld )t  s )  =  T )
109fveq2d 5529 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( int `  ( ( TopOpen ` fld )t  s
) )  =  ( int `  T ) )
11 simprr 733 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  f  =  F )
1211dmeqd 4881 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  f  =  dom  F )
13 simpl2 959 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  F : A --> CC )
14 fdm 5393 . . . . . . 7  |-  ( F : A --> CC  ->  dom 
F  =  A )
1513, 14syl 15 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  F  =  A )
1612, 15eqtrd 2315 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  f  =  A )
1710, 16fveq12d 5531 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )  =  ( ( int `  T ) `  A
) )
1816difeq1d 3293 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( dom  f  \  { x } )  =  ( A  \  { x } ) )
1911fveq1d 5527 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
f `  z )  =  ( F `  z ) )
2011fveq1d 5527 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
f `  x )  =  ( F `  x ) )
2119, 20oveq12d 5876 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( f `  z
)  -  ( f `
 x ) )  =  ( ( F `
 z )  -  ( F `  x ) ) )
2221oveq1d 5873 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( ( f `  z )  -  (
f `  x )
)  /  ( z  -  x ) )  =  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )
2318, 22mpteq12dv 4098 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
z  e.  ( dom  f  \  { x } )  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) )  =  ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) )
2423oveq1d 5873 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( z  e.  ( dom  f  \  {
x } )  |->  ( ( ( f `  z )  -  (
f `  x )
)  /  ( z  -  x ) ) ) lim CC  x )  =  ( ( z  e.  ( A  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
2524xpeq2d 4713 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) )  =  ( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) ) )
2617, 25iuneq12d 3929 . . 3  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) )  =  U_ x  e.  ( ( int `  T ) `  A ) ( { x }  X.  (
( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
27 simpr 447 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  s  =  S )  ->  s  =  S )
2827oveq2d 5874 . . 3  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  s  =  S )  ->  ( CC  ^pm  s
)  =  ( CC 
^pm  S ) )
29 simp1 955 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  C_  CC )
30 cnex 8818 . . . . 5  |-  CC  e.  _V
3130elpw2 4175 . . . 4  |-  ( S  e.  ~P CC  <->  S  C_  CC )
3229, 31sylibr 203 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  e.  ~P CC )
3330a1i 10 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  CC  e.  _V )
34 simp2 956 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F : A --> CC )
35 simp3 957 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A  C_  S )
36 elpm2r 6788 . . . 4  |-  ( ( ( CC  e.  _V  /\  S  e.  ~P CC )  /\  ( F : A
--> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm 
S ) )
3733, 32, 34, 35, 36syl22anc 1183 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F  e.  ( CC  ^pm  S
) )
38 limccl 19225 . . . . . . . . 9  |-  ( ( z  e.  ( A 
\  { x }
)  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x )  C_  CC
39 xpss2 4796 . . . . . . . . 9  |-  ( ( ( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  C_  CC  ->  ( { x }  X.  ( ( z  e.  ( A  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( {
x }  X.  CC ) )
4038, 39ax-mp 8 . . . . . . . 8  |-  ( { x }  X.  (
( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( { x }  X.  CC )
4140rgenw 2610 . . . . . . 7  |-  A. x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( {
x }  X.  CC )
42 ss2iun 3920 . . . . . . 7  |-  ( A. x  e.  ( ( int `  T ) `  A ) ( { x }  X.  (
( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( { x }  X.  CC )  ->  U_ x  e.  (
( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  C_  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC ) )
4341, 42ax-mp 8 . . . . . 6  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  C_  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC )
44 iunxpconst 4746 . . . . . 6  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC )  =  ( ( ( int `  T
) `  A )  X.  CC )
4543, 44sseqtri 3210 . . . . 5  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( (
( int `  T
) `  A )  X.  CC )
4645a1i 10 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( (
( int `  T
) `  A )  X.  CC ) )
47 fvex 5539 . . . . . 6  |-  ( ( int `  T ) `
 A )  e. 
_V
4847, 30xpex 4801 . . . . 5  |-  ( ( ( int `  T
) `  A )  X.  CC )  e.  _V
4948ssex 4158 . . . 4  |-  ( U_ x  e.  ( ( int `  T ) `  A ) ( { x }  X.  (
( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( ( ( int `  T ) `
 A )  X.  CC )  ->  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  e.  _V )
5046, 49syl 15 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  e.  _V )
512, 26, 28, 32, 37, 50ovmpt2dx 5974 . 2  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( S  _D  F )  = 
U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) ) )
5251, 46eqsstrd 3212 . 2  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) )
5351, 52jca 518 1  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    \ cdif 3149    C_ wss 3152   ~Pcpw 3625   {csn 3640   U_ciun 3905    e. cmpt 4077    X. cxp 4687   dom cdm 4689   -->wf 5251   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860    ^pm cpm 6773   CCcc 8735    - cmin 9037    / cdiv 9423   ↾t crest 13325   TopOpenctopn 13326  ℂfldccnfld 16377   intcnt 16754   lim CC climc 19212    _D cdv 19213
This theorem is referenced by:  eldv  19248  dvbssntr  19250
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-fz 10783  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-starv 13223  df-tset 13227  df-ple 13228  df-ds 13230  df-rest 13327  df-topn 13328  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cnp 16958  df-xms 17885  df-ms 17886  df-limc 19216  df-dv 19217
  Copyright terms: Public domain W3C validator