Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh3dim3N Unicode version

Theorem dvh3dim3N 32086
Description: There is a vector that is outside of 2 spans. TODO: decide to use either this or dvh3dim2 32085 everywhere. If this one is needed, make dvh3dim2 32085 into a lemma. (Contributed by NM, 21-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvh3dim.h  |-  H  =  ( LHyp `  K
)
dvh3dim.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvh3dim.v  |-  V  =  ( Base `  U
)
dvh3dim.n  |-  N  =  ( LSpan `  U )
dvh3dim.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dvh3dim.x  |-  ( ph  ->  X  e.  V )
dvh3dim.y  |-  ( ph  ->  Y  e.  V )
dvh3dim2.z  |-  ( ph  ->  Z  e.  V )
dvh3dim3.t  |-  ( ph  ->  T  e.  V )
Assertion
Ref Expression
dvh3dim3N  |-  ( ph  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
Distinct variable groups:    z, N    z, U    z, V    z, X    z, Y    z, Z    ph, z    z, T
Allowed substitution hints:    H( z)    K( z)    W( z)

Proof of Theorem dvh3dim3N
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . . 5  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
2 dvh3dim.n . . . . 5  |-  N  =  ( LSpan `  U )
3 dvh3dim.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
4 dvh3dim.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
5 dvh3dim.k . . . . . . 7  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
63, 4, 5dvhlmod 31747 . . . . . 6  |-  ( ph  ->  U  e.  LMod )
76adantr 452 . . . . 5  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  U  e.  LMod )
8 dvh3dim.v . . . . . . 7  |-  V  =  ( Base `  U
)
9 dvh3dim2.z . . . . . . 7  |-  ( ph  ->  Z  e.  V )
10 dvh3dim3.t . . . . . . 7  |-  ( ph  ->  T  e.  V )
118, 1, 2, 6, 9, 10lspprcl 16042 . . . . . 6  |-  ( ph  ->  ( N `  { Z ,  T }
)  e.  ( LSubSp `  U ) )
1211adantr 452 . . . . 5  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  ( N `  { Z ,  T }
)  e.  ( LSubSp `  U ) )
13 simpr 448 . . . . 5  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  Y  e.  ( N `  { Z ,  T } ) )
148, 2, 6, 9, 10lspprid2 16062 . . . . . 6  |-  ( ph  ->  T  e.  ( N `
 { Z ,  T } ) )
1514adantr 452 . . . . 5  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  T  e.  ( N `  { Z ,  T } ) )
161, 2, 7, 12, 13, 15lspprss 16056 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  ( N `  { Y ,  T }
)  C_  ( N `  { Z ,  T } ) )
17 sspss 3438 . . . 4  |-  ( ( N `  { Y ,  T } )  C_  ( N `  { Z ,  T } )  <->  ( ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } )  \/  ( N `  { Y ,  T }
)  =  ( N `
 { Z ,  T } ) ) )
1816, 17sylib 189 . . 3  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  ( ( N `
 { Y ,  T } )  C.  ( N `  { Z ,  T } )  \/  ( N `  { Y ,  T }
)  =  ( N `
 { Z ,  T } ) ) )
193, 4, 5dvhlvec 31746 . . . . . . 7  |-  ( ph  ->  U  e.  LVec )
2019adantr 452 . . . . . 6  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  U  e.  LVec )
21 dvh3dim.y . . . . . . . 8  |-  ( ph  ->  Y  e.  V )
228, 1, 2, 6, 21, 10lspprcl 16042 . . . . . . 7  |-  ( ph  ->  ( N `  { Y ,  T }
)  e.  ( LSubSp `  U ) )
2322adantr 452 . . . . . 6  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  ( N `  { Y ,  T }
)  e.  ( LSubSp `  U ) )
249adantr 452 . . . . . 6  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  Z  e.  V
)
2510adantr 452 . . . . . 6  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  T  e.  V
)
26 simpr 448 . . . . . 6  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  ( N `  { Y ,  T }
)  C.  ( N `  { Z ,  T } ) )
278, 1, 2, 20, 23, 24, 25, 26lspprat 16213 . . . . 5  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  E. w  e.  V  ( N `  { Y ,  T } )  =  ( N `  {
w } ) )
2853ad2ant1 978 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
29 simp2 958 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  w  e.  V )
30 dvh3dim.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  V )
31303ad2ant1 978 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  X  e.  V )
3293ad2ant1 978 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  Z  e.  V )
333, 4, 8, 2, 28, 29, 31, 32dvh3dim2 32085 . . . . . . . 8  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { w ,  X } )  /\  -.  z  e.  ( N `  { w ,  Z } ) ) )
3463ad2ant1 978 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  U  e.  LMod )
351lsssssubg 16022 . . . . . . . . . . . . . . 15  |-  ( U  e.  LMod  ->  ( LSubSp `  U )  C_  (SubGrp `  U ) )
3634, 35syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( LSubSp `
 U )  C_  (SubGrp `  U ) )
378, 1, 2lspsncl 16041 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
386, 30, 37syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
39383ad2ant1 978 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
4036, 39sseldd 3341 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { X } )  e.  (SubGrp `  U ) )
418, 1, 2lspsncl 16041 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  LMod  /\  w  e.  V )  ->  ( N `  { w } )  e.  (
LSubSp `  U ) )
4234, 29, 41syl2anc 643 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { w } )  e.  (
LSubSp `  U ) )
4336, 42sseldd 3341 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { w } )  e.  (SubGrp `  U ) )
44 prssi 3946 . . . . . . . . . . . . . . . . 17  |-  ( ( Y  e.  V  /\  T  e.  V )  ->  { Y ,  T }  C_  V )
4521, 10, 44syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { Y ,  T }  C_  V )
46 snsspr1 3939 . . . . . . . . . . . . . . . . 17  |-  { Y }  C_  { Y ,  T }
4746a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { Y }  C_  { Y ,  T }
)
488, 2lspss 16048 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  LMod  /\  { Y ,  T }  C_  V  /\  { Y }  C_  { Y ,  T } )  ->  ( N `  { Y } )  C_  ( N `  { Y ,  T } ) )
496, 45, 47, 48syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N `  { Y } )  C_  ( N `  { Y ,  T } ) )
50493ad2ant1 978 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Y } )  C_  ( N `  { Y ,  T } ) )
51 simp3 959 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Y ,  T } )  =  ( N `  {
w } ) )
5250, 51sseqtrd 3376 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Y } )  C_  ( N `  { w } ) )
53 eqid 2435 . . . . . . . . . . . . . 14  |-  ( LSSum `  U )  =  (
LSSum `  U )
5453lsmless2 15282 . . . . . . . . . . . . 13  |-  ( ( ( N `  { X } )  e.  (SubGrp `  U )  /\  ( N `  { w } )  e.  (SubGrp `  U )  /\  ( N `  { Y } )  C_  ( N `  { w } ) )  -> 
( ( N `  { X } ) (
LSSum `  U ) ( N `  { Y } ) )  C_  ( ( N `  { X } ) (
LSSum `  U ) ( N `  { w } ) ) )
5540, 43, 52, 54syl3anc 1184 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  (
( N `  { X } ) ( LSSum `  U ) ( N `
 { Y }
) )  C_  (
( N `  { X } ) ( LSSum `  U ) ( N `
 { w }
) ) )
568, 2, 53, 6, 30, 21lsmpr 16149 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { X ,  Y }
)  =  ( ( N `  { X } ) ( LSSum `  U ) ( N `
 { Y }
) ) )
57563ad2ant1 978 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { X ,  Y } )  =  ( ( N `  { X } ) (
LSSum `  U ) ( N `  { Y } ) ) )
58 prcom 3874 . . . . . . . . . . . . . 14  |-  { w ,  X }  =  { X ,  w }
5958fveq2i 5722 . . . . . . . . . . . . 13  |-  ( N `
 { w ,  X } )  =  ( N `  { X ,  w }
)
608, 2, 53, 34, 31, 29lsmpr 16149 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { X ,  w } )  =  ( ( N `  { X } ) (
LSSum `  U ) ( N `  { w } ) ) )
6159, 60syl5eq 2479 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { w ,  X } )  =  ( ( N `  { X } ) (
LSSum `  U ) ( N `  { w } ) ) )
6255, 57, 613sstr4d 3383 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { X ,  Y } )  C_  ( N `  { w ,  X } ) )
6362ssneld 3342 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( -.  z  e.  ( N `  { w ,  X } )  ->  -.  z  e.  ( N `  { X ,  Y } ) ) )
648, 1, 2lspsncl 16041 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  LMod  /\  Z  e.  V )  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
656, 9, 64syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
66653ad2ant1 978 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
6736, 66sseldd 3341 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Z } )  e.  (SubGrp `  U ) )
68 snsspr2 3940 . . . . . . . . . . . . . . . . 17  |-  { T }  C_  { Y ,  T }
6968a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { T }  C_  { Y ,  T }
)
708, 2lspss 16048 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  LMod  /\  { Y ,  T }  C_  V  /\  { T }  C_  { Y ,  T } )  ->  ( N `  { T } )  C_  ( N `  { Y ,  T } ) )
716, 45, 69, 70syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N `  { T } )  C_  ( N `  { Y ,  T } ) )
72713ad2ant1 978 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { T } )  C_  ( N `  { Y ,  T } ) )
7372, 51sseqtrd 3376 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { T } )  C_  ( N `  { w } ) )
7453lsmless2 15282 . . . . . . . . . . . . 13  |-  ( ( ( N `  { Z } )  e.  (SubGrp `  U )  /\  ( N `  { w } )  e.  (SubGrp `  U )  /\  ( N `  { T } )  C_  ( N `  { w } ) )  -> 
( ( N `  { Z } ) (
LSSum `  U ) ( N `  { T } ) )  C_  ( ( N `  { Z } ) (
LSSum `  U ) ( N `  { w } ) ) )
7567, 43, 73, 74syl3anc 1184 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  (
( N `  { Z } ) ( LSSum `  U ) ( N `
 { T }
) )  C_  (
( N `  { Z } ) ( LSSum `  U ) ( N `
 { w }
) ) )
768, 2, 53, 6, 9, 10lsmpr 16149 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { Z ,  T }
)  =  ( ( N `  { Z } ) ( LSSum `  U ) ( N `
 { T }
) ) )
77763ad2ant1 978 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Z ,  T } )  =  ( ( N `  { Z } ) (
LSSum `  U ) ( N `  { T } ) ) )
78 prcom 3874 . . . . . . . . . . . . . 14  |-  { w ,  Z }  =  { Z ,  w }
7978fveq2i 5722 . . . . . . . . . . . . 13  |-  ( N `
 { w ,  Z } )  =  ( N `  { Z ,  w }
)
808, 2, 53, 34, 32, 29lsmpr 16149 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Z ,  w } )  =  ( ( N `  { Z } ) (
LSSum `  U ) ( N `  { w } ) ) )
8179, 80syl5eq 2479 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { w ,  Z } )  =  ( ( N `  { Z } ) (
LSSum `  U ) ( N `  { w } ) ) )
8275, 77, 813sstr4d 3383 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Z ,  T } )  C_  ( N `  { w ,  Z } ) )
8382ssneld 3342 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( -.  z  e.  ( N `  { w ,  Z } )  ->  -.  z  e.  ( N `  { Z ,  T } ) ) )
8463, 83anim12d 547 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  (
( -.  z  e.  ( N `  {
w ,  X }
)  /\  -.  z  e.  ( N `  {
w ,  Z }
) )  ->  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
8584reximdv 2809 . . . . . . . 8  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( E. z  e.  V  ( -.  z  e.  ( N `  { w ,  X } )  /\  -.  z  e.  ( N `  { w ,  Z } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
8633, 85mpd 15 . . . . . . 7  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
8786rexlimdv3a 2824 . . . . . 6  |-  ( ph  ->  ( E. w  e.  V  ( N `  { Y ,  T }
)  =  ( N `
 { w }
)  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
8887adantr 452 . . . . 5  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  ( E. w  e.  V  ( N `  { Y ,  T } )  =  ( N `  { w } )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
8927, 88mpd 15 . . . 4  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
903, 4, 8, 2, 5, 21, 30, 10dvh3dim2 32085 . . . . . 6  |-  ( ph  ->  E. z  e.  V  ( -.  z  e.  ( N `  { Y ,  X } )  /\  -.  z  e.  ( N `  { Y ,  T } ) ) )
9190adantr 452 . . . . 5  |-  ( (
ph  /\  ( N `  { Y ,  T } )  =  ( N `  { Z ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { Y ,  X } )  /\  -.  z  e.  ( N `  { Y ,  T } ) ) )
92 simpr 448 . . . . . . 7  |-  ( (
ph  /\  ( N `  { Y ,  T } )  =  ( N `  { Z ,  T } ) )  ->  ( N `  { Y ,  T }
)  =  ( N `
 { Z ,  T } ) )
93 prcom 3874 . . . . . . . . . . . 12  |-  { Y ,  X }  =  { X ,  Y }
9493fveq2i 5722 . . . . . . . . . . 11  |-  ( N `
 { Y ,  X } )  =  ( N `  { X ,  Y } )
9594eleq2i 2499 . . . . . . . . . 10  |-  ( z  e.  ( N `  { Y ,  X }
)  <->  z  e.  ( N `  { X ,  Y } ) )
9695notbii 288 . . . . . . . . 9  |-  ( -.  z  e.  ( N `
 { Y ,  X } )  <->  -.  z  e.  ( N `  { X ,  Y }
) )
9796a1i 11 . . . . . . . 8  |-  ( ( N `  { Y ,  T } )  =  ( N `  { Z ,  T }
)  ->  ( -.  z  e.  ( N `  { Y ,  X } )  <->  -.  z  e.  ( N `  { X ,  Y }
) ) )
98 eleq2 2496 . . . . . . . . 9  |-  ( ( N `  { Y ,  T } )  =  ( N `  { Z ,  T }
)  ->  ( z  e.  ( N `  { Y ,  T }
)  <->  z  e.  ( N `  { Z ,  T } ) ) )
9998notbid 286 . . . . . . . 8  |-  ( ( N `  { Y ,  T } )  =  ( N `  { Z ,  T }
)  ->  ( -.  z  e.  ( N `  { Y ,  T } )  <->  -.  z  e.  ( N `  { Z ,  T }
) ) )
10097, 99anbi12d 692 . . . . . . 7  |-  ( ( N `  { Y ,  T } )  =  ( N `  { Z ,  T }
)  ->  ( ( -.  z  e.  ( N `  { Y ,  X } )  /\  -.  z  e.  ( N `  { Y ,  T } ) )  <-> 
( -.  z  e.  ( N `  { X ,  Y }
)  /\  -.  z  e.  ( N `  { Z ,  T }
) ) ) )
10192, 100syl 16 . . . . . 6  |-  ( (
ph  /\  ( N `  { Y ,  T } )  =  ( N `  { Z ,  T } ) )  ->  ( ( -.  z  e.  ( N `
 { Y ,  X } )  /\  -.  z  e.  ( N `  { Y ,  T } ) )  <->  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
102101rexbidv 2718 . . . . 5  |-  ( (
ph  /\  ( N `  { Y ,  T } )  =  ( N `  { Z ,  T } ) )  ->  ( E. z  e.  V  ( -.  z  e.  ( N `  { Y ,  X } )  /\  -.  z  e.  ( N `  { Y ,  T } ) )  <->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
10391, 102mpbid 202 . . . 4  |-  ( (
ph  /\  ( N `  { Y ,  T } )  =  ( N `  { Z ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
10489, 103jaodan 761 . . 3  |-  ( (
ph  /\  ( ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } )  \/  ( N `  { Y ,  T }
)  =  ( N `
 { Z ,  T } ) ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
10518, 104syldan 457 . 2  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
1063, 4, 8, 2, 5, 21, 30, 10dvh3dim2 32085 . . . 4  |-  ( ph  ->  E. w  e.  V  ( -.  w  e.  ( N `  { Y ,  X } )  /\  -.  w  e.  ( N `  { Y ,  T } ) ) )
107106adantr 452 . . 3  |-  ( (
ph  /\  -.  Y  e.  ( N `  { Z ,  T }
) )  ->  E. w  e.  V  ( -.  w  e.  ( N `  { Y ,  X } )  /\  -.  w  e.  ( N `  { Y ,  T } ) ) )
108 simpl1l 1008 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  ph )
109108, 6syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  U  e.  LMod )
110 simpl2 961 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  w  e.  V )
111108, 21syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  Y  e.  V )
112 eqid 2435 . . . . . . . 8  |-  ( +g  `  U )  =  ( +g  `  U )
1138, 112lmodvacl 15952 . . . . . . 7  |-  ( ( U  e.  LMod  /\  w  e.  V  /\  Y  e.  V )  ->  (
w ( +g  `  U
) Y )  e.  V )
114109, 110, 111, 113syl3anc 1184 . . . . . 6  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  -> 
( w ( +g  `  U ) Y )  e.  V )
1158, 1, 2, 6, 30, 21lspprcl 16042 . . . . . . . 8  |-  ( ph  ->  ( N `  { X ,  Y }
)  e.  ( LSubSp `  U ) )
116108, 115syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  -> 
( N `  { X ,  Y }
)  e.  ( LSubSp `  U ) )
1178, 2, 6, 30, 21lspprid2 16062 . . . . . . . 8  |-  ( ph  ->  Y  e.  ( N `
 { X ,  Y } ) )
118108, 117syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  Y  e.  ( N `  { X ,  Y } ) )
119 simpl3l 1012 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  -.  w  e.  ( N `  { Y ,  X } ) )
12094eleq2i 2499 . . . . . . . 8  |-  ( w  e.  ( N `  { Y ,  X }
)  <->  w  e.  ( N `  { X ,  Y } ) )
121119, 120sylnib 296 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  -.  w  e.  ( N `  { X ,  Y } ) )
1228, 112, 1, 109, 116, 118, 110, 121lssvancl2 16010 . . . . . 6  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  -.  ( w ( +g  `  U ) Y )  e.  ( N `  { X ,  Y }
) )
123108, 11syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  -> 
( N `  { Z ,  T }
)  e.  ( LSubSp `  U ) )
124 simpr 448 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  w  e.  ( N `  { Z ,  T } ) )
125 simpl1r 1009 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  -.  Y  e.  ( N `  { Z ,  T } ) )
1268, 112, 1, 109, 123, 124, 111, 125lssvancl1 16009 . . . . . 6  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  -.  ( w ( +g  `  U ) Y )  e.  ( N `  { Z ,  T }
) )
127 eleq1 2495 . . . . . . . . 9  |-  ( z  =  ( w ( +g  `  U ) Y )  ->  (
z  e.  ( N `
 { X ,  Y } )  <->  ( w
( +g  `  U ) Y )  e.  ( N `  { X ,  Y } ) ) )
128127notbid 286 . . . . . . . 8  |-  ( z  =  ( w ( +g  `  U ) Y )  ->  ( -.  z  e.  ( N `  { X ,  Y } )  <->  -.  (
w ( +g  `  U
) Y )  e.  ( N `  { X ,  Y }
) ) )
129 eleq1 2495 . . . . . . . . 9  |-  ( z  =  ( w ( +g  `  U ) Y )  ->  (
z  e.  ( N `
 { Z ,  T } )  <->  ( w
( +g  `  U ) Y )  e.  ( N `  { Z ,  T } ) ) )
130129notbid 286 . . . . . . . 8  |-  ( z  =  ( w ( +g  `  U ) Y )  ->  ( -.  z  e.  ( N `  { Z ,  T } )  <->  -.  (
w ( +g  `  U
) Y )  e.  ( N `  { Z ,  T }
) ) )
131128, 130anbi12d 692 . . . . . . 7  |-  ( z  =  ( w ( +g  `  U ) Y )  ->  (
( -.  z  e.  ( N `  { X ,  Y }
)  /\  -.  z  e.  ( N `  { Z ,  T }
) )  <->  ( -.  ( w ( +g  `  U ) Y )  e.  ( N `  { X ,  Y }
)  /\  -.  (
w ( +g  `  U
) Y )  e.  ( N `  { Z ,  T }
) ) ) )
132131rspcev 3044 . . . . . 6  |-  ( ( ( w ( +g  `  U ) Y )  e.  V  /\  ( -.  ( w ( +g  `  U ) Y )  e.  ( N `  { X ,  Y }
)  /\  -.  (
w ( +g  `  U
) Y )  e.  ( N `  { Z ,  T }
) ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
133114, 122, 126, 132syl12anc 1182 . . . . 5  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
134 simpl2 961 . . . . . 6  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  -.  w  e.  ( N `  { Z ,  T } ) )  ->  w  e.  V
)
135 simpl3l 1012 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  -.  w  e.  ( N `  { Z ,  T } ) )  ->  -.  w  e.  ( N `  { Y ,  X } ) )
136135, 120sylnib 296 . . . . . 6  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  -.  w  e.  ( N `  { Z ,  T } ) )  ->  -.  w  e.  ( N `  { X ,  Y } ) )
137 simpr 448 . . . . . 6  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  -.  w  e.  ( N `  { Z ,  T } ) )  ->  -.  w  e.  ( N `  { Z ,  T } ) )
138 eleq1 2495 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  e.  ( N `
 { X ,  Y } )  <->  w  e.  ( N `  { X ,  Y } ) ) )
139138notbid 286 . . . . . . . 8  |-  ( z  =  w  ->  ( -.  z  e.  ( N `  { X ,  Y } )  <->  -.  w  e.  ( N `  { X ,  Y }
) ) )
140 eleq1 2495 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  e.  ( N `
 { Z ,  T } )  <->  w  e.  ( N `  { Z ,  T } ) ) )
141140notbid 286 . . . . . . . 8  |-  ( z  =  w  ->  ( -.  z  e.  ( N `  { Z ,  T } )  <->  -.  w  e.  ( N `  { Z ,  T }
) ) )
142139, 141anbi12d 692 . . . . . . 7  |-  ( z  =  w  ->  (
( -.  z  e.  ( N `  { X ,  Y }
)  /\  -.  z  e.  ( N `  { Z ,  T }
) )  <->  ( -.  w  e.  ( N `  { X ,  Y } )  /\  -.  w  e.  ( N `  { Z ,  T } ) ) ) )
143142rspcev 3044 . . . . . 6  |-  ( ( w  e.  V  /\  ( -.  w  e.  ( N `  { X ,  Y } )  /\  -.  w  e.  ( N `  { Z ,  T } ) ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
144134, 136, 137, 143syl12anc 1182 . . . . 5  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  -.  w  e.  ( N `  { Z ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
145133, 144pm2.61dan 767 . . . 4  |-  ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X } )  /\  -.  w  e.  ( N `  { Y ,  T } ) ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
146145rexlimdv3a 2824 . . 3  |-  ( (
ph  /\  -.  Y  e.  ( N `  { Z ,  T }
) )  ->  ( E. w  e.  V  ( -.  w  e.  ( N `  { Y ,  X } )  /\  -.  w  e.  ( N `  { Y ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
147107, 146mpd 15 . 2  |-  ( (
ph  /\  -.  Y  e.  ( N `  { Z ,  T }
) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
148105, 147pm2.61dan 767 1  |-  ( ph  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2698    C_ wss 3312    C. wpss 3313   {csn 3806   {cpr 3807   ` cfv 5445  (class class class)co 6072   Basecbs 13457   +g cplusg 13517  SubGrpcsubg 14926   LSSumclsm 15256   LModclmod 15938   LSubSpclss 15996   LSpanclspn 16035   LVecclvec 16162   HLchlt 29987   LHypclh 30620   DVecHcdvh 31715
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-tpos 6470  df-undef 6534  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-map 7011  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-n0 10211  df-z 10272  df-uz 10478  df-fz 11033  df-struct 13459  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-sca 13533  df-vsca 13534  df-0g 13715  df-poset 14391  df-plt 14403  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p0 14456  df-p1 14457  df-lat 14463  df-clat 14525  df-mnd 14678  df-submnd 14727  df-grp 14800  df-minusg 14801  df-sbg 14802  df-subg 14929  df-cntz 15104  df-lsm 15258  df-cmn 15402  df-abl 15403  df-mgp 15637  df-rng 15651  df-ur 15653  df-oppr 15716  df-dvdsr 15734  df-unit 15735  df-invr 15765  df-dvr 15776  df-drng 15825  df-lmod 15940  df-lss 15997  df-lsp 16036  df-lvec 16163  df-lsatoms 29613  df-oposet 29813  df-ol 29815  df-oml 29816  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988  df-llines 30134  df-lplanes 30135  df-lvols 30136  df-lines 30137  df-psubsp 30139  df-pmap 30140  df-padd 30432  df-lhyp 30624  df-laut 30625  df-ldil 30740  df-ltrn 30741  df-trl 30795  df-tgrp 31379  df-tendo 31391  df-edring 31393  df-dveca 31639  df-disoa 31666  df-dvech 31716  df-dib 31776  df-dic 31810  df-dih 31866  df-doch 31985  df-djh 32032
  Copyright terms: Public domain W3C validator