Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopN Unicode version

Theorem dvhopN 30556
Description: Decompose a  DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of  DVecA and the other from the one-dimensional vector subspace  E. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by 
<. (  _I  |`  B ) ,  (  _I  |`  T )
>.,  U,  <. F ,  O >.. We swapped the order of vector sum (their juxtaposition i.e. composition) to show  <. F ,  O >. first. Note that  O and  (  _I  |`  T ) are the zero and one of the division ring  E, and  (  _I  |`  B ) is the zero of the translation group.  S is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvhop.b  |-  B  =  ( Base `  K
)
dvhop.h  |-  H  =  ( LHyp `  K
)
dvhop.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhop.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhop.p  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `  c )  o.  (
b `  c )
) ) )
dvhop.a  |-  A  =  ( f  e.  ( T  X.  E ) ,  g  e.  ( T  X.  E ) 
|->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( ( 2nd `  f ) P ( 2nd `  g ) ) >. )
dvhop.s  |-  S  =  ( s  e.  E ,  f  e.  ( T  X.  E )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
dvhop.o  |-  O  =  ( c  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
dvhopN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. F ,  U >.  =  ( <. F ,  O >. A ( U S
<. (  _I  |`  B ) ,  (  _I  |`  T )
>. ) ) )
Distinct variable groups:    B, c    a, b, f, g, s, E    H, c    K, c    P, f, g    a, c, T, b, f, g, s    W, a, b, c
Allowed substitution hints:    A( f, g, s, a, b, c)    B( f, g, s, a, b)    P( s, a, b, c)    S( f, g, s, a, b, c)    U( f, g, s, a, b, c)    E( c)    F( f, g, s, a, b, c)    H( f, g, s, a, b)    K( f, g, s, a, b)    O( f, g, s, a, b, c)    W( f, g, s)

Proof of Theorem dvhopN
StepHypRef Expression
1 simprr 736 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  U  e.  E )
2 dvhop.b . . . . . . 7  |-  B  =  ( Base `  K
)
3 dvhop.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
4 dvhop.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4idltrn 29589 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
65adantr 453 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
(  _I  |`  B )  e.  T )
7 dvhop.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
83, 4, 7tendoidcl 30208 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
98adantr 453 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
(  _I  |`  T )  e.  E )
10 dvhop.s . . . . . 6  |-  S  =  ( s  e.  E ,  f  e.  ( T  X.  E )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
1110dvhopspN 30555 . . . . 5  |-  ( ( U  e.  E  /\  ( (  _I  |`  B )  e.  T  /\  (  _I  |`  T )  e.  E ) )  -> 
( U S <. (  _I  |`  B ) ,  (  _I  |`  T )
>. )  =  <. ( U `  (  _I  |`  B ) ) ,  ( U  o.  (  _I  |`  T ) )
>. )
121, 6, 9, 11syl12anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U S <. (  _I  |`  B ) ,  (  _I  |`  T )
>. )  =  <. ( U `  (  _I  |`  B ) ) ,  ( U  o.  (  _I  |`  T ) )
>. )
132, 3, 7tendoid 30212 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
1413adantrl 699 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
153, 4, 7tendo1mulr 30210 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U  o.  (  _I  |`  T ) )  =  U )
1615adantrl 699 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U  o.  (  _I  |`  T ) )  =  U )
1714, 16opeq12d 3778 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. ( U `  (  _I  |`  B ) ) ,  ( U  o.  (  _I  |`  T ) ) >.  =  <. (  _I  |`  B ) ,  U >. )
1812, 17eqtrd 2290 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U S <. (  _I  |`  B ) ,  (  _I  |`  T )
>. )  =  <. (  _I  |`  B ) ,  U >. )
1918oveq2d 5808 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( <. F ,  O >. A ( U S
<. (  _I  |`  B ) ,  (  _I  |`  T )
>. ) )  =  (
<. F ,  O >. A
<. (  _I  |`  B ) ,  U >. )
)
20 simprl 735 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  F  e.  T )
21 dvhop.o . . . . 5  |-  O  =  ( c  e.  T  |->  (  _I  |`  B ) )
222, 3, 4, 7, 21tendo0cl 30229 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
2322adantr 453 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  O  e.  E )
24 dvhop.a . . . 4  |-  A  =  ( f  e.  ( T  X.  E ) ,  g  e.  ( T  X.  E ) 
|->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( ( 2nd `  f ) P ( 2nd `  g ) ) >. )
2524dvhopaddN 30554 . . 3  |-  ( ( ( F  e.  T  /\  O  e.  E
)  /\  ( (  _I  |`  B )  e.  T  /\  U  e.  E ) )  -> 
( <. F ,  O >. A <. (  _I  |`  B ) ,  U >. )  =  <. ( F  o.  (  _I  |`  B ) ) ,  ( O P U ) >.
)
2620, 23, 6, 1, 25syl22anc 1188 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( <. F ,  O >. A <. (  _I  |`  B ) ,  U >. )  =  <. ( F  o.  (  _I  |`  B ) ) ,  ( O P U ) >.
)
272, 3, 4ltrn1o 29563 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
2827adantrr 700 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  F : B -1-1-onto-> B )
29 f1of 5410 . . . 4  |-  ( F : B -1-1-onto-> B  ->  F : B
--> B )
30 fcoi1 5353 . . . 4  |-  ( F : B --> B  -> 
( F  o.  (  _I  |`  B ) )  =  F )
3128, 29, 303syl 20 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( F  o.  (  _I  |`  B ) )  =  F )
32 dvhop.p . . . . 5  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `  c )  o.  (
b `  c )
) ) )
332, 3, 4, 7, 21, 32tendo0pl 30230 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( O P U )  =  U )
3433adantrl 699 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( O P U )  =  U )
3531, 34opeq12d 3778 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. ( F  o.  (  _I  |`  B ) ) ,  ( O P U ) >.  =  <. F ,  U >. )
3619, 26, 353eqtrrd 2295 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. F ,  U >.  =  ( <. F ,  O >. A ( U S
<. (  _I  |`  B ) ,  (  _I  |`  T )
>. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   <.cop 3617    e. cmpt 4051    _I cid 4276    X. cxp 4659    |` cres 4663    o. ccom 4665   -->wf 4669   -1-1-onto->wf1o 4672   ` cfv 4673  (class class class)co 5792    e. cmpt2 5794   1stc1st 6054   2ndc2nd 6055   Basecbs 13111   HLchlt 28790   LHypclh 29423   LTrncltrn 29540   TEndoctendo 30191
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-map 6742  df-poset 14043  df-plt 14055  df-lub 14071  df-glb 14072  df-join 14073  df-meet 14074  df-p0 14108  df-p1 14109  df-lat 14115  df-clat 14177  df-oposet 28616  df-ol 28618  df-oml 28619  df-covers 28706  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-llines 28937  df-lplanes 28938  df-lvols 28939  df-lines 28940  df-psubsp 28942  df-pmap 28943  df-padd 29235  df-lhyp 29427  df-laut 29428  df-ldil 29543  df-ltrn 29544  df-trl 29598  df-tendo 30194
  Copyright terms: Public domain W3C validator