Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopN Unicode version

Theorem dvhopN 30436
Description: Decompose a  DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of  DVecA and the other from the one-dimensional vector subspace  E. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by 
<. (  _I  |`  B ) ,  (  _I  |`  T )
>.,  U,  <. F ,  O >.. We swapped the order of vector sum (their juxtaposition i.e. composition) to show  <. F ,  O >. first. Note that  O and  (  _I  |`  T ) are the zero and one of the division ring  E, and  (  _I  |`  B ) is the zero of the translation group.  S is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvhop.b  |-  B  =  ( Base `  K
)
dvhop.h  |-  H  =  ( LHyp `  K
)
dvhop.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhop.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhop.p  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `  c )  o.  (
b `  c )
) ) )
dvhop.a  |-  A  =  ( f  e.  ( T  X.  E ) ,  g  e.  ( T  X.  E ) 
|->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( ( 2nd `  f ) P ( 2nd `  g ) ) >. )
dvhop.s  |-  S  =  ( s  e.  E ,  f  e.  ( T  X.  E )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
dvhop.o  |-  O  =  ( c  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
dvhopN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. F ,  U >.  =  ( <. F ,  O >. A ( U S
<. (  _I  |`  B ) ,  (  _I  |`  T )
>. ) ) )
Distinct variable groups:    B, c    a, b, f, g, s, E    H, c    K, c    P, f, g    a, c, T, b, f, g, s    W, a, b, c
Allowed substitution hints:    A( f, g, s, a, b, c)    B( f, g, s, a, b)    P( s, a, b, c)    S( f, g, s, a, b, c)    U( f, g, s, a, b, c)    E( c)    F( f, g, s, a, b, c)    H( f, g, s, a, b)    K( f, g, s, a, b)    O( f, g, s, a, b, c)    W( f, g, s)

Proof of Theorem dvhopN
StepHypRef Expression
1 simprr 736 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  U  e.  E )
2 dvhop.b . . . . . . 7  |-  B  =  ( Base `  K
)
3 dvhop.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
4 dvhop.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4idltrn 29469 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
65adantr 453 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
(  _I  |`  B )  e.  T )
7 dvhop.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
83, 4, 7tendoidcl 30088 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
98adantr 453 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
(  _I  |`  T )  e.  E )
10 dvhop.s . . . . . 6  |-  S  =  ( s  e.  E ,  f  e.  ( T  X.  E )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
1110dvhopspN 30435 . . . . 5  |-  ( ( U  e.  E  /\  ( (  _I  |`  B )  e.  T  /\  (  _I  |`  T )  e.  E ) )  -> 
( U S <. (  _I  |`  B ) ,  (  _I  |`  T )
>. )  =  <. ( U `  (  _I  |`  B ) ) ,  ( U  o.  (  _I  |`  T ) )
>. )
121, 6, 9, 11syl12anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U S <. (  _I  |`  B ) ,  (  _I  |`  T )
>. )  =  <. ( U `  (  _I  |`  B ) ) ,  ( U  o.  (  _I  |`  T ) )
>. )
132, 3, 7tendoid 30092 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
1413adantrl 699 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
153, 4, 7tendo1mulr 30090 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U  o.  (  _I  |`  T ) )  =  U )
1615adantrl 699 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U  o.  (  _I  |`  T ) )  =  U )
1714, 16opeq12d 3745 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. ( U `  (  _I  |`  B ) ) ,  ( U  o.  (  _I  |`  T ) ) >.  =  <. (  _I  |`  B ) ,  U >. )
1812, 17eqtrd 2288 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U S <. (  _I  |`  B ) ,  (  _I  |`  T )
>. )  =  <. (  _I  |`  B ) ,  U >. )
1918oveq2d 5773 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( <. F ,  O >. A ( U S
<. (  _I  |`  B ) ,  (  _I  |`  T )
>. ) )  =  (
<. F ,  O >. A
<. (  _I  |`  B ) ,  U >. )
)
20 simprl 735 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  F  e.  T )
21 dvhop.o . . . . 5  |-  O  =  ( c  e.  T  |->  (  _I  |`  B ) )
222, 3, 4, 7, 21tendo0cl 30109 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
2322adantr 453 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  O  e.  E )
24 dvhop.a . . . 4  |-  A  =  ( f  e.  ( T  X.  E ) ,  g  e.  ( T  X.  E ) 
|->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( ( 2nd `  f ) P ( 2nd `  g ) ) >. )
2524dvhopaddN 30434 . . 3  |-  ( ( ( F  e.  T  /\  O  e.  E
)  /\  ( (  _I  |`  B )  e.  T  /\  U  e.  E ) )  -> 
( <. F ,  O >. A <. (  _I  |`  B ) ,  U >. )  =  <. ( F  o.  (  _I  |`  B ) ) ,  ( O P U ) >.
)
2620, 23, 6, 1, 25syl22anc 1188 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( <. F ,  O >. A <. (  _I  |`  B ) ,  U >. )  =  <. ( F  o.  (  _I  |`  B ) ) ,  ( O P U ) >.
)
272, 3, 4ltrn1o 29443 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
2827adantrr 700 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  F : B -1-1-onto-> B )
29 f1of 5375 . . . 4  |-  ( F : B -1-1-onto-> B  ->  F : B
--> B )
30 fcoi1 5318 . . . 4  |-  ( F : B --> B  -> 
( F  o.  (  _I  |`  B ) )  =  F )
3128, 29, 303syl 20 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( F  o.  (  _I  |`  B ) )  =  F )
32 dvhop.p . . . . 5  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `  c )  o.  (
b `  c )
) ) )
332, 3, 4, 7, 21, 32tendo0pl 30110 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( O P U )  =  U )
3433adantrl 699 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( O P U )  =  U )
3531, 34opeq12d 3745 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. ( F  o.  (  _I  |`  B ) ) ,  ( O P U ) >.  =  <. F ,  U >. )
3619, 26, 353eqtrrd 2293 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. F ,  U >.  =  ( <. F ,  O >. A ( U S
<. (  _I  |`  B ) ,  (  _I  |`  T )
>. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   <.cop 3584    e. cmpt 4017    _I cid 4241    X. cxp 4624    |` cres 4628    o. ccom 4630   -->wf 4634   -1-1-onto->wf1o 4637   ` cfv 4638  (class class class)co 5757    e. cmpt2 5759   1stc1st 6019   2ndc2nd 6020   Basecbs 13075   HLchlt 28670   LHypclh 29303   LTrncltrn 29420   TEndoctendo 30071
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-map 6707  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-llines 28817  df-lplanes 28818  df-lvols 28819  df-lines 28820  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307  df-laut 29308  df-ldil 29423  df-ltrn 29424  df-trl 29478  df-tendo 30074
  Copyright terms: Public domain W3C validator