MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptfsum Structured version   Unicode version

Theorem dvmptfsum 19859
Description: Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014.)
Hypotheses
Ref Expression
dvmptfsum.j  |-  J  =  ( Kt  S )
dvmptfsum.k  |-  K  =  ( TopOpen ` fld )
dvmptfsum.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvmptfsum.x  |-  ( ph  ->  X  e.  J )
dvmptfsum.i  |-  ( ph  ->  I  e.  Fin )
dvmptfsum.a  |-  ( (
ph  /\  i  e.  I  /\  x  e.  X
)  ->  A  e.  CC )
dvmptfsum.b  |-  ( (
ph  /\  i  e.  I  /\  x  e.  X
)  ->  B  e.  CC )
dvmptfsum.d  |-  ( (
ph  /\  i  e.  I )  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
Assertion
Ref Expression
dvmptfsum  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  sum_ i  e.  I  A ) )  =  ( x  e.  X  |->  sum_ i  e.  I  B ) )
Distinct variable groups:    x, i, I    ph, i, x    S, i, x    i, X, x
Allowed substitution hints:    A( x, i)    B( x, i)    J( x, i)    K( x, i)

Proof of Theorem dvmptfsum
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3367 . 2  |-  I  C_  I
2 dvmptfsum.i . . 3  |-  ( ph  ->  I  e.  Fin )
3 sseq1 3369 . . . . . 6  |-  ( a  =  (/)  ->  ( a 
C_  I  <->  (/)  C_  I
) )
4 sumeq1 12483 . . . . . . . . 9  |-  ( a  =  (/)  ->  sum_ i  e.  a  A  =  sum_ i  e.  (/)  A )
54mpteq2dv 4296 . . . . . . . 8  |-  ( a  =  (/)  ->  ( x  e.  X  |->  sum_ i  e.  a  A )  =  ( x  e.  X  |->  sum_ i  e.  (/)  A ) )
65oveq2d 6097 . . . . . . 7  |-  ( a  =  (/)  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  a  A ) )  =  ( S  _D  (
x  e.  X  |->  sum_ i  e.  (/)  A ) ) )
7 sumeq1 12483 . . . . . . . 8  |-  ( a  =  (/)  ->  sum_ i  e.  a  B  =  sum_ i  e.  (/)  B )
87mpteq2dv 4296 . . . . . . 7  |-  ( a  =  (/)  ->  ( x  e.  X  |->  sum_ i  e.  a  B )  =  ( x  e.  X  |->  sum_ i  e.  (/)  B ) )
96, 8eqeq12d 2450 . . . . . 6  |-  ( a  =  (/)  ->  ( ( S  _D  ( x  e.  X  |->  sum_ i  e.  a  A )
)  =  ( x  e.  X  |->  sum_ i  e.  a  B )  <->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  (/)  A ) )  =  ( x  e.  X  |->  sum_ i  e.  (/)  B ) ) )
103, 9imbi12d 312 . . . . 5  |-  ( a  =  (/)  ->  ( ( a  C_  I  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  a  A )
)  =  ( x  e.  X  |->  sum_ i  e.  a  B )
)  <->  ( (/)  C_  I  ->  ( S  _D  (
x  e.  X  |->  sum_ i  e.  (/)  A ) )  =  ( x  e.  X  |->  sum_ i  e.  (/)  B ) ) ) )
1110imbi2d 308 . . . 4  |-  ( a  =  (/)  ->  ( (
ph  ->  ( a  C_  I  ->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  a  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  a  B ) ) )  <-> 
( ph  ->  ( (/)  C_  I  ->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  (/)  A ) )  =  ( x  e.  X  |->  sum_ i  e.  (/)  B ) ) ) ) )
12 sseq1 3369 . . . . . 6  |-  ( a  =  b  ->  (
a  C_  I  <->  b  C_  I ) )
13 sumeq1 12483 . . . . . . . . 9  |-  ( a  =  b  ->  sum_ i  e.  a  A  =  sum_ i  e.  b  A )
1413mpteq2dv 4296 . . . . . . . 8  |-  ( a  =  b  ->  (
x  e.  X  |->  sum_ i  e.  a  A )  =  ( x  e.  X  |->  sum_ i  e.  b  A )
)
1514oveq2d 6097 . . . . . . 7  |-  ( a  =  b  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  a  A ) )  =  ( S  _D  (
x  e.  X  |->  sum_ i  e.  b  A ) ) )
16 sumeq1 12483 . . . . . . . 8  |-  ( a  =  b  ->  sum_ i  e.  a  B  =  sum_ i  e.  b  B )
1716mpteq2dv 4296 . . . . . . 7  |-  ( a  =  b  ->  (
x  e.  X  |->  sum_ i  e.  a  B )  =  ( x  e.  X  |->  sum_ i  e.  b  B )
)
1815, 17eqeq12d 2450 . . . . . 6  |-  ( a  =  b  ->  (
( S  _D  (
x  e.  X  |->  sum_ i  e.  a  A ) )  =  ( x  e.  X  |->  sum_ i  e.  a  B )  <->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) )
1912, 18imbi12d 312 . . . . 5  |-  ( a  =  b  ->  (
( a  C_  I  ->  ( S  _D  (
x  e.  X  |->  sum_ i  e.  a  A ) )  =  ( x  e.  X  |->  sum_ i  e.  a  B ) )  <->  ( b  C_  I  ->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) ) )
2019imbi2d 308 . . . 4  |-  ( a  =  b  ->  (
( ph  ->  ( a 
C_  I  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  a  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  a  B ) ) )  <-> 
( ph  ->  ( b 
C_  I  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) ) ) )
21 sseq1 3369 . . . . . 6  |-  ( a  =  ( b  u. 
{ c } )  ->  ( a  C_  I 
<->  ( b  u.  {
c } )  C_  I ) )
22 sumeq1 12483 . . . . . . . . 9  |-  ( a  =  ( b  u. 
{ c } )  ->  sum_ i  e.  a  A  =  sum_ i  e.  ( b  u.  {
c } ) A )
2322mpteq2dv 4296 . . . . . . . 8  |-  ( a  =  ( b  u. 
{ c } )  ->  ( x  e.  X  |->  sum_ i  e.  a  A )  =  ( x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) A ) )
2423oveq2d 6097 . . . . . . 7  |-  ( a  =  ( b  u. 
{ c } )  ->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  a  A ) )  =  ( S  _D  (
x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) A ) ) )
25 sumeq1 12483 . . . . . . . 8  |-  ( a  =  ( b  u. 
{ c } )  ->  sum_ i  e.  a  B  =  sum_ i  e.  ( b  u.  {
c } ) B )
2625mpteq2dv 4296 . . . . . . 7  |-  ( a  =  ( b  u. 
{ c } )  ->  ( x  e.  X  |->  sum_ i  e.  a  B )  =  ( x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) B ) )
2724, 26eqeq12d 2450 . . . . . 6  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( S  _D  ( x  e.  X  |->  sum_ i  e.  a  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  a  B )  <->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  ( b  u.  { c } ) A ) )  =  ( x  e.  X  |->  sum_ i  e.  ( b  u.  {
c } ) B ) ) )
2821, 27imbi12d 312 . . . . 5  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( a 
C_  I  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  a  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  a  B ) )  <->  ( (
b  u.  { c } )  C_  I  ->  ( S  _D  (
x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) A ) )  =  ( x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) B ) ) ) )
2928imbi2d 308 . . . 4  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( ph  ->  ( a  C_  I  ->  ( S  _D  (
x  e.  X  |->  sum_ i  e.  a  A ) )  =  ( x  e.  X  |->  sum_ i  e.  a  B ) ) )  <->  ( ph  ->  ( ( b  u. 
{ c } ) 
C_  I  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) A ) )  =  ( x  e.  X  |->  sum_ i  e.  ( b  u.  {
c } ) B ) ) ) ) )
30 sseq1 3369 . . . . . 6  |-  ( a  =  I  ->  (
a  C_  I  <->  I  C_  I
) )
31 sumeq1 12483 . . . . . . . . 9  |-  ( a  =  I  ->  sum_ i  e.  a  A  =  sum_ i  e.  I  A )
3231mpteq2dv 4296 . . . . . . . 8  |-  ( a  =  I  ->  (
x  e.  X  |->  sum_ i  e.  a  A )  =  ( x  e.  X  |->  sum_ i  e.  I  A )
)
3332oveq2d 6097 . . . . . . 7  |-  ( a  =  I  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  a  A ) )  =  ( S  _D  (
x  e.  X  |->  sum_ i  e.  I  A ) ) )
34 sumeq1 12483 . . . . . . . 8  |-  ( a  =  I  ->  sum_ i  e.  a  B  =  sum_ i  e.  I  B )
3534mpteq2dv 4296 . . . . . . 7  |-  ( a  =  I  ->  (
x  e.  X  |->  sum_ i  e.  a  B )  =  ( x  e.  X  |->  sum_ i  e.  I  B )
)
3633, 35eqeq12d 2450 . . . . . 6  |-  ( a  =  I  ->  (
( S  _D  (
x  e.  X  |->  sum_ i  e.  a  A ) )  =  ( x  e.  X  |->  sum_ i  e.  a  B )  <->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  I  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  I  B ) ) )
3730, 36imbi12d 312 . . . . 5  |-  ( a  =  I  ->  (
( a  C_  I  ->  ( S  _D  (
x  e.  X  |->  sum_ i  e.  a  A ) )  =  ( x  e.  X  |->  sum_ i  e.  a  B ) )  <->  ( I  C_  I  ->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  I  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  I  B ) ) ) )
3837imbi2d 308 . . . 4  |-  ( a  =  I  ->  (
( ph  ->  ( a 
C_  I  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  a  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  a  B ) ) )  <-> 
( ph  ->  ( I 
C_  I  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  I  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  I  B ) ) ) ) )
39 dvmptfsum.s . . . . . . 7  |-  ( ph  ->  S  e.  { RR ,  CC } )
40 0cn 9084 . . . . . . . 8  |-  0  e.  CC
4140a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  0  e.  CC )
4240a1i 11 . . . . . . . 8  |-  ( ph  ->  0  e.  CC )
4339, 42dvmptc 19844 . . . . . . 7  |-  ( ph  ->  ( S  _D  (
x  e.  S  |->  0 ) )  =  ( x  e.  S  |->  0 ) )
44 dvmptfsum.j . . . . . . . . 9  |-  J  =  ( Kt  S )
45 dvmptfsum.k . . . . . . . . . . 11  |-  K  =  ( TopOpen ` fld )
4645cnfldtopon 18817 . . . . . . . . . 10  |-  K  e.  (TopOn `  CC )
47 recnprss 19791 . . . . . . . . . . 11  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
4839, 47syl 16 . . . . . . . . . 10  |-  ( ph  ->  S  C_  CC )
49 resttopon 17225 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
5046, 48, 49sylancr 645 . . . . . . . . 9  |-  ( ph  ->  ( Kt  S )  e.  (TopOn `  S ) )
5144, 50syl5eqel 2520 . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  S ) )
52 dvmptfsum.x . . . . . . . 8  |-  ( ph  ->  X  e.  J )
53 toponss 16994 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  S )  /\  X  e.  J )  ->  X  C_  S )
5451, 52, 53syl2anc 643 . . . . . . 7  |-  ( ph  ->  X  C_  S )
5539, 41, 41, 43, 54, 44, 45, 52dvmptres 19849 . . . . . 6  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  0 ) )  =  ( x  e.  X  |->  0 ) )
56 sum0 12515 . . . . . . . 8  |-  sum_ i  e.  (/)  A  =  0
5756mpteq2i 4292 . . . . . . 7  |-  ( x  e.  X  |->  sum_ i  e.  (/)  A )  =  ( x  e.  X  |->  0 )
5857oveq2i 6092 . . . . . 6  |-  ( S  _D  ( x  e.  X  |->  sum_ i  e.  (/)  A ) )  =  ( S  _D  ( x  e.  X  |->  0 ) )
59 sum0 12515 . . . . . . 7  |-  sum_ i  e.  (/)  B  =  0
6059mpteq2i 4292 . . . . . 6  |-  ( x  e.  X  |->  sum_ i  e.  (/)  B )  =  ( x  e.  X  |->  0 )
6155, 58, 603eqtr4g 2493 . . . . 5  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  sum_ i  e.  (/)  A ) )  =  ( x  e.  X  |->  sum_ i  e.  (/)  B ) )
6261a1d 23 . . . 4  |-  ( ph  ->  ( (/)  C_  I  -> 
( S  _D  (
x  e.  X  |->  sum_ i  e.  (/)  A ) )  =  ( x  e.  X  |->  sum_ i  e.  (/)  B ) ) )
63 ssun1 3510 . . . . . . . . . 10  |-  b  C_  ( b  u.  {
c } )
64 sstr 3356 . . . . . . . . . 10  |-  ( ( b  C_  ( b  u.  { c } )  /\  ( b  u. 
{ c } ) 
C_  I )  -> 
b  C_  I )
6563, 64mpan 652 . . . . . . . . 9  |-  ( ( b  u.  { c } )  C_  I  ->  b  C_  I )
6665imim1i 56 . . . . . . . 8  |-  ( ( b  C_  I  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A )
)  =  ( x  e.  X  |->  sum_ i  e.  b  B )
)  ->  ( (
b  u.  { c } )  C_  I  ->  ( S  _D  (
x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |->  sum_ i  e.  b  B ) ) )
67 simpll 731 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( ( b  u. 
{ c } ) 
C_  I  /\  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) )  ->  ph )
6867, 39syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( ( b  u. 
{ c } ) 
C_  I  /\  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) )  ->  S  e.  { RR ,  CC } )
692ad3antrrr 711 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  I  e.  Fin )
7065ad2antlr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  b  C_  I )
71 ssfi 7329 . . . . . . . . . . . . . . 15  |-  ( ( I  e.  Fin  /\  b  C_  I )  -> 
b  e.  Fin )
7269, 70, 71syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  b  e.  Fin )
73 simp-4l 743 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  c  e.  b )  /\  ( b  u.  { c } )  C_  I )  /\  a  e.  X
)  /\  i  e.  b )  ->  ph )
7470sselda 3348 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  c  e.  b )  /\  ( b  u.  { c } )  C_  I )  /\  a  e.  X
)  /\  i  e.  b )  ->  i  e.  I )
75 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  c  e.  b )  /\  ( b  u.  { c } )  C_  I )  /\  a  e.  X
)  /\  i  e.  b )  ->  a  e.  X )
76 nfv 1629 . . . . . . . . . . . . . . . . 17  |-  F/ x
( ph  /\  i  e.  I  /\  a  e.  X )
77 nfcsb1v 3283 . . . . . . . . . . . . . . . . . 18  |-  F/_ x [_ a  /  x ]_ A
7877nfel1 2582 . . . . . . . . . . . . . . . . 17  |-  F/ x [_ a  /  x ]_ A  e.  CC
7976, 78nfim 1832 . . . . . . . . . . . . . . . 16  |-  F/ x
( ( ph  /\  i  e.  I  /\  a  e.  X )  ->  [_ a  /  x ]_ A  e.  CC )
80 eleq1 2496 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  (
x  e.  X  <->  a  e.  X ) )
81803anbi3d 1260 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  (
( ph  /\  i  e.  I  /\  x  e.  X )  <->  ( ph  /\  i  e.  I  /\  a  e.  X )
) )
82 csbeq1a 3259 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  A  =  [_ a  /  x ]_ A )
8382eleq1d 2502 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  ( A  e.  CC  <->  [_ a  /  x ]_ A  e.  CC ) )
8481, 83imbi12d 312 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  (
( ( ph  /\  i  e.  I  /\  x  e.  X )  ->  A  e.  CC )  <-> 
( ( ph  /\  i  e.  I  /\  a  e.  X )  ->  [_ a  /  x ]_ A  e.  CC ) ) )
85 dvmptfsum.a . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  I  /\  x  e.  X
)  ->  A  e.  CC )
8679, 84, 85chvar 1968 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  I  /\  a  e.  X
)  ->  [_ a  /  x ]_ A  e.  CC )
8773, 74, 75, 86syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
-.  c  e.  b )  /\  ( b  u.  { c } )  C_  I )  /\  a  e.  X
)  /\  i  e.  b )  ->  [_ a  /  x ]_ A  e.  CC )
8872, 87fsumcl 12527 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  -> 
sum_ i  e.  b 
[_ a  /  x ]_ A  e.  CC )
8988adantlrr 702 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( (
b  u.  { c } )  C_  I  /\  ( S  _D  (
x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |->  sum_ i  e.  b  B ) ) )  /\  a  e.  X )  -> 
sum_ i  e.  b 
[_ a  /  x ]_ A  e.  CC )
90 sumex 12481 . . . . . . . . . . . . 13  |-  sum_ i  e.  b  [_ a  /  x ]_ B  e.  _V
9190a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( (
b  u.  { c } )  C_  I  /\  ( S  _D  (
x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |->  sum_ i  e.  b  B ) ) )  /\  a  e.  X )  -> 
sum_ i  e.  b 
[_ a  /  x ]_ B  e.  _V )
92 nfcv 2572 . . . . . . . . . . . . . . . . 17  |-  F/_ a sum_ i  e.  b  A
93 nfcv 2572 . . . . . . . . . . . . . . . . . 18  |-  F/_ x
b
9493, 77nfsum 12485 . . . . . . . . . . . . . . . . 17  |-  F/_ x sum_ i  e.  b  [_ a  /  x ]_ A
9582sumeq2sdv 12498 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  sum_ i  e.  b  A  =  sum_ i  e.  b  [_ a  /  x ]_ A
)
9692, 94, 95cbvmpt 4299 . . . . . . . . . . . . . . . 16  |-  ( x  e.  X  |->  sum_ i  e.  b  A )  =  ( a  e.  X  |->  sum_ i  e.  b 
[_ a  /  x ]_ A )
9796oveq2i 6092 . . . . . . . . . . . . . . 15  |-  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( S  _D  (
a  e.  X  |->  sum_ i  e.  b  [_ a  /  x ]_ A
) )
98 nfcv 2572 . . . . . . . . . . . . . . . 16  |-  F/_ a sum_ i  e.  b  B
99 nfcsb1v 3283 . . . . . . . . . . . . . . . . 17  |-  F/_ x [_ a  /  x ]_ B
10093, 99nfsum 12485 . . . . . . . . . . . . . . . 16  |-  F/_ x sum_ i  e.  b  [_ a  /  x ]_ B
101 csbeq1a 3259 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  B  =  [_ a  /  x ]_ B )
102101sumeq2sdv 12498 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  sum_ i  e.  b  B  =  sum_ i  e.  b  [_ a  /  x ]_ B
)
10398, 100, 102cbvmpt 4299 . . . . . . . . . . . . . . 15  |-  ( x  e.  X  |->  sum_ i  e.  b  B )  =  ( a  e.  X  |->  sum_ i  e.  b 
[_ a  /  x ]_ B )
10497, 103eqeq12i 2449 . . . . . . . . . . . . . 14  |-  ( ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A )
)  =  ( x  e.  X  |->  sum_ i  e.  b  B )  <->  ( S  _D  ( a  e.  X  |->  sum_ i  e.  b  [_ a  /  x ]_ A ) )  =  ( a  e.  X  |->  sum_ i  e.  b 
[_ a  /  x ]_ B ) )
105104biimpi 187 . . . . . . . . . . . . 13  |-  ( ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A )
)  =  ( x  e.  X  |->  sum_ i  e.  b  B )  ->  ( S  _D  (
a  e.  X  |->  sum_ i  e.  b  [_ a  /  x ]_ A
) )  =  ( a  e.  X  |->  sum_ i  e.  b  [_ a  /  x ]_ B
) )
106105ad2antll 710 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( ( b  u. 
{ c } ) 
C_  I  /\  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) )  ->  ( S  _D  ( a  e.  X  |-> 
sum_ i  e.  b 
[_ a  /  x ]_ A ) )  =  ( a  e.  X  |-> 
sum_ i  e.  b 
[_ a  /  x ]_ B ) )
107 simplll 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  ph )
108 ssun2 3511 . . . . . . . . . . . . . . . . 17  |-  { c }  C_  ( b  u.  { c } )
109 sstr 3356 . . . . . . . . . . . . . . . . 17  |-  ( ( { c }  C_  ( b  u.  {
c } )  /\  ( b  u.  {
c } )  C_  I )  ->  { c }  C_  I )
110108, 109mpan 652 . . . . . . . . . . . . . . . 16  |-  ( ( b  u.  { c } )  C_  I  ->  { c }  C_  I )
111 vex 2959 . . . . . . . . . . . . . . . . 17  |-  c  e. 
_V
112111snss 3926 . . . . . . . . . . . . . . . 16  |-  ( c  e.  I  <->  { c }  C_  I )
113110, 112sylibr 204 . . . . . . . . . . . . . . 15  |-  ( ( b  u.  { c } )  C_  I  ->  c  e.  I )
114113ad2antlr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  c  e.  I )
115 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  a  e.  X )
116853expb 1154 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( i  e.  I  /\  x  e.  X ) )  ->  A  e.  CC )
117116ancom2s 778 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  X  /\  i  e.  I ) )  ->  A  e.  CC )
118117ralrimivva 2798 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  X  A. i  e.  I  A  e.  CC )
119 nfcsb1v 3283 . . . . . . . . . . . . . . . . . 18  |-  F/_ i [_ c  /  i ]_ [_ a  /  x ]_ A
120119nfel1 2582 . . . . . . . . . . . . . . . . 17  |-  F/ i
[_ c  /  i ]_ [_ a  /  x ]_ A  e.  CC
121 csbeq1a 3259 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  c  ->  [_ a  /  x ]_ A  = 
[_ c  /  i ]_ [_ a  /  x ]_ A )
122121eleq1d 2502 . . . . . . . . . . . . . . . . 17  |-  ( i  =  c  ->  ( [_ a  /  x ]_ A  e.  CC  <->  [_ c  /  i ]_ [_ a  /  x ]_ A  e.  CC )
)
12378, 120, 83, 122rspc2 3057 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  X  /\  c  e.  I )  ->  ( A. x  e.  X  A. i  e.  I  A  e.  CC  ->  [_ c  /  i ]_ [_ a  /  x ]_ A  e.  CC ) )
124123ancoms 440 . . . . . . . . . . . . . . 15  |-  ( ( c  e.  I  /\  a  e.  X )  ->  ( A. x  e.  X  A. i  e.  I  A  e.  CC  ->  [_ c  /  i ]_ [_ a  /  x ]_ A  e.  CC ) )
125118, 124mpan9 456 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( c  e.  I  /\  a  e.  X ) )  ->  [_ c  /  i ]_ [_ a  /  x ]_ A  e.  CC )
126107, 114, 115, 125syl12anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  [_ c  /  i ]_ [_ a  /  x ]_ A  e.  CC )
127126adantlrr 702 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( (
b  u.  { c } )  C_  I  /\  ( S  _D  (
x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |->  sum_ i  e.  b  B ) ) )  /\  a  e.  X )  ->  [_ c  /  i ]_ [_ a  /  x ]_ A  e.  CC )
128 dvmptfsum.b . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  I  /\  x  e.  X
)  ->  B  e.  CC )
1291283expb 1154 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( i  e.  I  /\  x  e.  X ) )  ->  B  e.  CC )
130129ancom2s 778 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  X  /\  i  e.  I ) )  ->  B  e.  CC )
131130ralrimivva 2798 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  X  A. i  e.  I  B  e.  CC )
13299nfel1 2582 . . . . . . . . . . . . . . . . 17  |-  F/ x [_ a  /  x ]_ B  e.  CC
133 nfcsb1v 3283 . . . . . . . . . . . . . . . . . 18  |-  F/_ i [_ c  /  i ]_ [_ a  /  x ]_ B
134133nfel1 2582 . . . . . . . . . . . . . . . . 17  |-  F/ i
[_ c  /  i ]_ [_ a  /  x ]_ B  e.  CC
135101eleq1d 2502 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  ( B  e.  CC  <->  [_ a  /  x ]_ B  e.  CC ) )
136 csbeq1a 3259 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  c  ->  [_ a  /  x ]_ B  = 
[_ c  /  i ]_ [_ a  /  x ]_ B )
137136eleq1d 2502 . . . . . . . . . . . . . . . . 17  |-  ( i  =  c  ->  ( [_ a  /  x ]_ B  e.  CC  <->  [_ c  /  i ]_ [_ a  /  x ]_ B  e.  CC )
)
138132, 134, 135, 137rspc2 3057 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  X  /\  c  e.  I )  ->  ( A. x  e.  X  A. i  e.  I  B  e.  CC  ->  [_ c  /  i ]_ [_ a  /  x ]_ B  e.  CC ) )
139138ancoms 440 . . . . . . . . . . . . . . 15  |-  ( ( c  e.  I  /\  a  e.  X )  ->  ( A. x  e.  X  A. i  e.  I  B  e.  CC  ->  [_ c  /  i ]_ [_ a  /  x ]_ B  e.  CC ) )
140131, 139mpan9 456 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( c  e.  I  /\  a  e.  X ) )  ->  [_ c  /  i ]_ [_ a  /  x ]_ B  e.  CC )
141107, 114, 115, 140syl12anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  [_ c  /  i ]_ [_ a  /  x ]_ B  e.  CC )
142141adantlrr 702 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( (
b  u.  { c } )  C_  I  /\  ( S  _D  (
x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |->  sum_ i  e.  b  B ) ) )  /\  a  e.  X )  ->  [_ c  /  i ]_ [_ a  /  x ]_ B  e.  CC )
143113ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( ( b  u. 
{ c } ) 
C_  I  /\  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) )  ->  c  e.  I
)
144 nfv 1629 . . . . . . . . . . . . . . . 16  |-  F/ i ( ph  /\  c  e.  I )
145 nfcv 2572 . . . . . . . . . . . . . . . . . 18  |-  F/_ i S
146 nfcv 2572 . . . . . . . . . . . . . . . . . 18  |-  F/_ i  _D
147 nfcv 2572 . . . . . . . . . . . . . . . . . . 19  |-  F/_ i X
148 nfcsb1v 3283 . . . . . . . . . . . . . . . . . . 19  |-  F/_ i [_ c  /  i ]_ A
149147, 148nfmpt 4297 . . . . . . . . . . . . . . . . . 18  |-  F/_ i
( x  e.  X  |-> 
[_ c  /  i ]_ A )
150145, 146, 149nfov 6104 . . . . . . . . . . . . . . . . 17  |-  F/_ i
( S  _D  (
x  e.  X  |->  [_ c  /  i ]_ A
) )
151 nfcsb1v 3283 . . . . . . . . . . . . . . . . . 18  |-  F/_ i [_ c  /  i ]_ B
152147, 151nfmpt 4297 . . . . . . . . . . . . . . . . 17  |-  F/_ i
( x  e.  X  |-> 
[_ c  /  i ]_ B )
153150, 152nfeq 2579 . . . . . . . . . . . . . . . 16  |-  F/ i ( S  _D  (
x  e.  X  |->  [_ c  /  i ]_ A
) )  =  ( x  e.  X  |->  [_ c  /  i ]_ B
)
154144, 153nfim 1832 . . . . . . . . . . . . . . 15  |-  F/ i ( ( ph  /\  c  e.  I )  ->  ( S  _D  (
x  e.  X  |->  [_ c  /  i ]_ A
) )  =  ( x  e.  X  |->  [_ c  /  i ]_ B
) )
155 eleq1 2496 . . . . . . . . . . . . . . . . 17  |-  ( i  =  c  ->  (
i  e.  I  <->  c  e.  I ) )
156155anbi2d 685 . . . . . . . . . . . . . . . 16  |-  ( i  =  c  ->  (
( ph  /\  i  e.  I )  <->  ( ph  /\  c  e.  I ) ) )
157 csbeq1a 3259 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  c  ->  A  =  [_ c  /  i ]_ A )
158157mpteq2dv 4296 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  c  ->  (
x  e.  X  |->  A )  =  ( x  e.  X  |->  [_ c  /  i ]_ A
) )
159158oveq2d 6097 . . . . . . . . . . . . . . . . 17  |-  ( i  =  c  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( S  _D  ( x  e.  X  |-> 
[_ c  /  i ]_ A ) ) )
160 csbeq1a 3259 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  c  ->  B  =  [_ c  /  i ]_ B )
161160mpteq2dv 4296 . . . . . . . . . . . . . . . . 17  |-  ( i  =  c  ->  (
x  e.  X  |->  B )  =  ( x  e.  X  |->  [_ c  /  i ]_ B
) )
162159, 161eqeq12d 2450 . . . . . . . . . . . . . . . 16  |-  ( i  =  c  ->  (
( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B )  <->  ( S  _D  ( x  e.  X  |-> 
[_ c  /  i ]_ A ) )  =  ( x  e.  X  |-> 
[_ c  /  i ]_ B ) ) )
163156, 162imbi12d 312 . . . . . . . . . . . . . . 15  |-  ( i  =  c  ->  (
( ( ph  /\  i  e.  I )  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )  <->  ( ( ph  /\  c  e.  I
)  ->  ( S  _D  ( x  e.  X  |-> 
[_ c  /  i ]_ A ) )  =  ( x  e.  X  |-> 
[_ c  /  i ]_ B ) ) ) )
164 dvmptfsum.d . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  I )  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
165154, 163, 164chvar 1968 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  c  e.  I )  ->  ( S  _D  ( x  e.  X  |->  [_ c  /  i ]_ A ) )  =  ( x  e.  X  |-> 
[_ c  /  i ]_ B ) )
166 nfcv 2572 . . . . . . . . . . . . . . . 16  |-  F/_ a [_ c  /  i ]_ A
167 nfcv 2572 . . . . . . . . . . . . . . . . 17  |-  F/_ x
c
168167, 77nfcsb 3285 . . . . . . . . . . . . . . . 16  |-  F/_ x [_ c  /  i ]_ [_ a  /  x ]_ A
16982csbeq2dv 3276 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  [_ c  /  i ]_ A  =  [_ c  /  i ]_ [_ a  /  x ]_ A )
170166, 168, 169cbvmpt 4299 . . . . . . . . . . . . . . 15  |-  ( x  e.  X  |->  [_ c  /  i ]_ A
)  =  ( a  e.  X  |->  [_ c  /  i ]_ [_ a  /  x ]_ A )
171170oveq2i 6092 . . . . . . . . . . . . . 14  |-  ( S  _D  ( x  e.  X  |->  [_ c  /  i ]_ A ) )  =  ( S  _D  (
a  e.  X  |->  [_ c  /  i ]_ [_ a  /  x ]_ A ) )
172 nfcv 2572 . . . . . . . . . . . . . . 15  |-  F/_ a [_ c  /  i ]_ B
173167, 99nfcsb 3285 . . . . . . . . . . . . . . 15  |-  F/_ x [_ c  /  i ]_ [_ a  /  x ]_ B
174101csbeq2dv 3276 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  [_ c  /  i ]_ B  =  [_ c  /  i ]_ [_ a  /  x ]_ B )
175172, 173, 174cbvmpt 4299 . . . . . . . . . . . . . 14  |-  ( x  e.  X  |->  [_ c  /  i ]_ B
)  =  ( a  e.  X  |->  [_ c  /  i ]_ [_ a  /  x ]_ B )
176165, 171, 1753eqtr3g 2491 . . . . . . . . . . . . 13  |-  ( (
ph  /\  c  e.  I )  ->  ( S  _D  ( a  e.  X  |->  [_ c  /  i ]_ [_ a  /  x ]_ A ) )  =  ( a  e.  X  |-> 
[_ c  /  i ]_ [_ a  /  x ]_ B ) )
17767, 143, 176syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( ( b  u. 
{ c } ) 
C_  I  /\  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) )  ->  ( S  _D  ( a  e.  X  |-> 
[_ c  /  i ]_ [_ a  /  x ]_ A ) )  =  ( a  e.  X  |-> 
[_ c  /  i ]_ [_ a  /  x ]_ B ) )
17868, 89, 91, 106, 127, 142, 177dvmptadd 19846 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( ( b  u. 
{ c } ) 
C_  I  /\  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) )  ->  ( S  _D  ( a  e.  X  |->  ( sum_ i  e.  b 
[_ a  /  x ]_ A  +  [_ c  /  i ]_ [_ a  /  x ]_ A ) ) )  =  ( a  e.  X  |->  (
sum_ i  e.  b 
[_ a  /  x ]_ B  +  [_ c  /  i ]_ [_ a  /  x ]_ B ) ) )
179 nfcv 2572 . . . . . . . . . . . . . . 15  |-  F/_ a sum_ i  e.  ( b  u.  { c } ) A
180 nfcv 2572 . . . . . . . . . . . . . . . 16  |-  F/_ x
( b  u.  {
c } )
181180, 77nfsum 12485 . . . . . . . . . . . . . . 15  |-  F/_ x sum_ i  e.  ( b  u.  { c } ) [_ a  /  x ]_ A
18282sumeq2sdv 12498 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  sum_ i  e.  ( b  u.  {
c } ) A  =  sum_ i  e.  ( b  u.  { c } ) [_ a  /  x ]_ A )
183179, 181, 182cbvmpt 4299 . . . . . . . . . . . . . 14  |-  ( x  e.  X  |->  sum_ i  e.  ( b  u.  {
c } ) A )  =  ( a  e.  X  |->  sum_ i  e.  ( b  u.  {
c } ) [_ a  /  x ]_ A
)
184 simpllr 736 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  -.  c  e.  b )
185 disjsn 3868 . . . . . . . . . . . . . . . . . 18  |-  ( ( b  i^i  { c } )  =  (/)  <->  -.  c  e.  b )
186184, 185sylibr 204 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  ( b  i^i  {
c } )  =  (/) )
187 eqidd 2437 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  ( b  u.  {
c } )  =  ( b  u.  {
c } ) )
188 simplr 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  ( b  u.  {
c } )  C_  I )
189 ssfi 7329 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  Fin  /\  ( b  u.  {
c } )  C_  I )  ->  (
b  u.  { c } )  e.  Fin )
19069, 188, 189syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  ( b  u.  {
c } )  e. 
Fin )
191 simp-4l 743 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\ 
-.  c  e.  b )  /\  ( b  u.  { c } )  C_  I )  /\  a  e.  X
)  /\  i  e.  ( b  u.  {
c } ) )  ->  ph )
192188sselda 3348 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\ 
-.  c  e.  b )  /\  ( b  u.  { c } )  C_  I )  /\  a  e.  X
)  /\  i  e.  ( b  u.  {
c } ) )  ->  i  e.  I
)
193 simplr 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\ 
-.  c  e.  b )  /\  ( b  u.  { c } )  C_  I )  /\  a  e.  X
)  /\  i  e.  ( b  u.  {
c } ) )  ->  a  e.  X
)
194191, 192, 193, 86syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\ 
-.  c  e.  b )  /\  ( b  u.  { c } )  C_  I )  /\  a  e.  X
)  /\  i  e.  ( b  u.  {
c } ) )  ->  [_ a  /  x ]_ A  e.  CC )
195186, 187, 190, 194fsumsplit 12533 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  -> 
sum_ i  e.  ( b  u.  { c } ) [_ a  /  x ]_ A  =  ( sum_ i  e.  b 
[_ a  /  x ]_ A  +  sum_ i  e.  { c } [_ a  /  x ]_ A
) )
196 sumsns 12536 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  e.  _V  /\  [_ c  /  i ]_ [_ a  /  x ]_ A  e.  CC )  -> 
sum_ i  e.  {
c } [_ a  /  x ]_ A  = 
[_ c  /  i ]_ [_ a  /  x ]_ A )
197111, 126, 196sylancr 645 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  -> 
sum_ i  e.  {
c } [_ a  /  x ]_ A  = 
[_ c  /  i ]_ [_ a  /  x ]_ A )
198197oveq2d 6097 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  ( sum_ i  e.  b 
[_ a  /  x ]_ A  +  sum_ i  e.  { c } [_ a  /  x ]_ A
)  =  ( sum_ i  e.  b  [_ a  /  x ]_ A  +  [_ c  /  i ]_ [_ a  /  x ]_ A ) )
199195, 198eqtrd 2468 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  -> 
sum_ i  e.  ( b  u.  { c } ) [_ a  /  x ]_ A  =  ( sum_ i  e.  b 
[_ a  /  x ]_ A  +  [_ c  /  i ]_ [_ a  /  x ]_ A ) )
200199mpteq2dva 4295 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( b  u.  {
c } )  C_  I )  ->  (
a  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) [_ a  /  x ]_ A )  =  ( a  e.  X  |->  ( sum_ i  e.  b 
[_ a  /  x ]_ A  +  [_ c  /  i ]_ [_ a  /  x ]_ A ) ) )
201183, 200syl5eq 2480 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( b  u.  {
c } )  C_  I )  ->  (
x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) A )  =  ( a  e.  X  |->  ( sum_ i  e.  b 
[_ a  /  x ]_ A  +  [_ c  /  i ]_ [_ a  /  x ]_ A ) ) )
202201adantrr 698 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( ( b  u. 
{ c } ) 
C_  I  /\  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) )  ->  ( x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) A )  =  ( a  e.  X  |->  ( sum_ i  e.  b  [_ a  /  x ]_ A  +  [_ c  /  i ]_ [_ a  /  x ]_ A ) ) )
203202oveq2d 6097 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( ( b  u. 
{ c } ) 
C_  I  /\  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) )  ->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  ( b  u.  { c } ) A ) )  =  ( S  _D  ( a  e.  X  |->  ( sum_ i  e.  b  [_ a  /  x ]_ A  +  [_ c  /  i ]_ [_ a  /  x ]_ A ) ) ) )
204 nfcv 2572 . . . . . . . . . . . . . 14  |-  F/_ a sum_ i  e.  ( b  u.  { c } ) B
205180, 99nfsum 12485 . . . . . . . . . . . . . 14  |-  F/_ x sum_ i  e.  ( b  u.  { c } ) [_ a  /  x ]_ B
206101sumeq2sdv 12498 . . . . . . . . . . . . . 14  |-  ( x  =  a  ->  sum_ i  e.  ( b  u.  {
c } ) B  =  sum_ i  e.  ( b  u.  { c } ) [_ a  /  x ]_ B )
207204, 205, 206cbvmpt 4299 . . . . . . . . . . . . 13  |-  ( x  e.  X  |->  sum_ i  e.  ( b  u.  {
c } ) B )  =  ( a  e.  X  |->  sum_ i  e.  ( b  u.  {
c } ) [_ a  /  x ]_ B
)
20876, 132nfim 1832 . . . . . . . . . . . . . . . . . 18  |-  F/ x
( ( ph  /\  i  e.  I  /\  a  e.  X )  ->  [_ a  /  x ]_ B  e.  CC )
20981, 135imbi12d 312 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  (
( ( ph  /\  i  e.  I  /\  x  e.  X )  ->  B  e.  CC )  <-> 
( ( ph  /\  i  e.  I  /\  a  e.  X )  ->  [_ a  /  x ]_ B  e.  CC ) ) )
210208, 209, 128chvar 1968 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  I  /\  a  e.  X
)  ->  [_ a  /  x ]_ B  e.  CC )
211191, 192, 193, 210syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\ 
-.  c  e.  b )  /\  ( b  u.  { c } )  C_  I )  /\  a  e.  X
)  /\  i  e.  ( b  u.  {
c } ) )  ->  [_ a  /  x ]_ B  e.  CC )
212186, 187, 190, 211fsumsplit 12533 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  -> 
sum_ i  e.  ( b  u.  { c } ) [_ a  /  x ]_ B  =  ( sum_ i  e.  b 
[_ a  /  x ]_ B  +  sum_ i  e.  { c } [_ a  /  x ]_ B
) )
213 sumsns 12536 . . . . . . . . . . . . . . . . 17  |-  ( ( c  e.  _V  /\  [_ c  /  i ]_ [_ a  /  x ]_ B  e.  CC )  -> 
sum_ i  e.  {
c } [_ a  /  x ]_ B  = 
[_ c  /  i ]_ [_ a  /  x ]_ B )
214111, 141, 213sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  -> 
sum_ i  e.  {
c } [_ a  /  x ]_ B  = 
[_ c  /  i ]_ [_ a  /  x ]_ B )
215214oveq2d 6097 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  ->  ( sum_ i  e.  b 
[_ a  /  x ]_ B  +  sum_ i  e.  { c } [_ a  /  x ]_ B
)  =  ( sum_ i  e.  b  [_ a  /  x ]_ B  +  [_ c  /  i ]_ [_ a  /  x ]_ B ) )
216212, 215eqtrd 2468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  c  e.  b
)  /\  ( b  u.  { c } ) 
C_  I )  /\  a  e.  X )  -> 
sum_ i  e.  ( b  u.  { c } ) [_ a  /  x ]_ B  =  ( sum_ i  e.  b 
[_ a  /  x ]_ B  +  [_ c  /  i ]_ [_ a  /  x ]_ B ) )
217216mpteq2dva 4295 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( b  u.  {
c } )  C_  I )  ->  (
a  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) [_ a  /  x ]_ B )  =  ( a  e.  X  |->  ( sum_ i  e.  b 
[_ a  /  x ]_ B  +  [_ c  /  i ]_ [_ a  /  x ]_ B ) ) )
218207, 217syl5eq 2480 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( b  u.  {
c } )  C_  I )  ->  (
x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) B )  =  ( a  e.  X  |->  ( sum_ i  e.  b 
[_ a  /  x ]_ B  +  [_ c  /  i ]_ [_ a  /  x ]_ B ) ) )
219218adantrr 698 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( ( b  u. 
{ c } ) 
C_  I  /\  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) )  ->  ( x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) B )  =  ( a  e.  X  |->  ( sum_ i  e.  b  [_ a  /  x ]_ B  +  [_ c  /  i ]_ [_ a  /  x ]_ B ) ) )
220178, 203, 2193eqtr4d 2478 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  c  e.  b )  /\  ( ( b  u. 
{ c } ) 
C_  I  /\  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) )  ->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  ( b  u.  { c } ) A ) )  =  ( x  e.  X  |->  sum_ i  e.  ( b  u.  {
c } ) B ) )
221220exp32 589 . . . . . . . . 9  |-  ( (
ph  /\  -.  c  e.  b )  ->  (
( b  u.  {
c } )  C_  I  ->  ( ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B )  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) A ) )  =  ( x  e.  X  |->  sum_ i  e.  ( b  u.  {
c } ) B ) ) ) )
222221a2d 24 . . . . . . . 8  |-  ( (
ph  /\  -.  c  e.  b )  ->  (
( ( b  u. 
{ c } ) 
C_  I  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) )  -> 
( ( b  u. 
{ c } ) 
C_  I  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) A ) )  =  ( x  e.  X  |->  sum_ i  e.  ( b  u.  {
c } ) B ) ) ) )
22366, 222syl5 30 . . . . . . 7  |-  ( (
ph  /\  -.  c  e.  b )  ->  (
( b  C_  I  ->  ( S  _D  (
x  e.  X  |->  sum_ i  e.  b  A ) )  =  ( x  e.  X  |->  sum_ i  e.  b  B ) )  ->  (
( b  u.  {
c } )  C_  I  ->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  ( b  u.  { c } ) A ) )  =  ( x  e.  X  |->  sum_ i  e.  ( b  u.  {
c } ) B ) ) ) )
224223expcom 425 . . . . . 6  |-  ( -.  c  e.  b  -> 
( ph  ->  ( ( b  C_  I  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  b  A )
)  =  ( x  e.  X  |->  sum_ i  e.  b  B )
)  ->  ( (
b  u.  { c } )  C_  I  ->  ( S  _D  (
x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) A ) )  =  ( x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) B ) ) ) ) )
225224adantl 453 . . . . 5  |-  ( ( b  e.  Fin  /\  -.  c  e.  b
)  ->  ( ph  ->  ( ( b  C_  I  ->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) )  -> 
( ( b  u. 
{ c } ) 
C_  I  ->  ( S  _D  ( x  e.  X  |->  sum_ i  e.  ( b  u.  { c } ) A ) )  =  ( x  e.  X  |->  sum_ i  e.  ( b  u.  {
c } ) B ) ) ) ) )
226225a2d 24 . . . 4  |-  ( ( b  e.  Fin  /\  -.  c  e.  b
)  ->  ( ( ph  ->  ( b  C_  I  ->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  b  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  b  B ) ) )  ->  ( ph  ->  ( ( b  u.  {
c } )  C_  I  ->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  ( b  u.  { c } ) A ) )  =  ( x  e.  X  |->  sum_ i  e.  ( b  u.  {
c } ) B ) ) ) ) )
22711, 20, 29, 38, 62, 226findcard2s 7349 . . 3  |-  ( I  e.  Fin  ->  ( ph  ->  ( I  C_  I  ->  ( S  _D  ( x  e.  X  |-> 
sum_ i  e.  I  A ) )  =  ( x  e.  X  |-> 
sum_ i  e.  I  B ) ) ) )
2282, 227mpcom 34 . 2  |-  ( ph  ->  ( I  C_  I  ->  ( S  _D  (
x  e.  X  |->  sum_ i  e.  I  A ) )  =  ( x  e.  X  |->  sum_ i  e.  I  B ) ) )
2291, 228mpi 17 1  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  sum_ i  e.  I  A ) )  =  ( x  e.  X  |->  sum_ i  e.  I  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   _Vcvv 2956   [_csb 3251    u. cun 3318    i^i cin 3319    C_ wss 3320   (/)c0 3628   {csn 3814   {cpr 3815    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   Fincfn 7109   CCcc 8988   RRcr 8989   0cc0 8990    + caddc 8993   sum_csu 12479   ↾t crest 13648   TopOpenctopn 13649  ℂfldccnfld 16703  TopOnctopon 16959    _D cdv 19750
This theorem is referenced by:  dvply1  20201  dvtaylp  20286  pserdvlem2  20344  advlogexp  20546
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-icc 10923  df-fz 11044  df-fzo 11136  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-sum 12480  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754
  Copyright terms: Public domain W3C validator