MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvntaylp Unicode version

Theorem dvntaylp 19752
Description: The  M-th derivative of the Taylor polynomial is the Taylor polynomial of the  M-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
dvntaylp.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvntaylp.f  |-  ( ph  ->  F : A --> CC )
dvntaylp.a  |-  ( ph  ->  A  C_  S )
dvntaylp.m  |-  ( ph  ->  M  e.  NN0 )
dvntaylp.n  |-  ( ph  ->  N  e.  NN0 )
dvntaylp.b  |-  ( ph  ->  B  e.  dom  (
( S  D n F ) `  ( N  +  M )
) )
Assertion
Ref Expression
dvntaylp  |-  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M
)  =  ( N ( S Tayl  ( ( S  D n F ) `  M ) ) B ) )

Proof of Theorem dvntaylp
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvntaylp.m . . . . 5  |-  ( ph  ->  M  e.  NN0 )
2 nn0uz 10264 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2375 . . . 4  |-  ( ph  ->  M  e.  ( ZZ>= ` 
0 ) )
4 eluzfz2b 10807 . . . 4  |-  ( M  e.  ( ZZ>= `  0
)  <->  M  e.  (
0 ... M ) )
53, 4sylib 188 . . 3  |-  ( ph  ->  M  e.  ( 0 ... M ) )
6 fveq2 5527 . . . . . 6  |-  ( m  =  0  ->  (
( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  m )  =  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) ` 
0 ) )
7 fveq2 5527 . . . . . . . 8  |-  ( m  =  0  ->  (
( S  D n F ) `  m
)  =  ( ( S  D n F ) `  0 ) )
87oveq2d 5876 . . . . . . 7  |-  ( m  =  0  ->  ( S Tayl  ( ( S  D n F ) `  m
) )  =  ( S Tayl  ( ( S  D n F ) `
 0 ) ) )
9 oveq2 5868 . . . . . . . 8  |-  ( m  =  0  ->  ( M  -  m )  =  ( M  - 
0 ) )
109oveq2d 5876 . . . . . . 7  |-  ( m  =  0  ->  ( N  +  ( M  -  m ) )  =  ( N  +  ( M  -  0 ) ) )
11 eqidd 2286 . . . . . . 7  |-  ( m  =  0  ->  B  =  B )
128, 10, 11oveq123d 5881 . . . . . 6  |-  ( m  =  0  ->  (
( N  +  ( M  -  m ) ) ( S Tayl  (
( S  D n F ) `  m
) ) B )  =  ( ( N  +  ( M  - 
0 ) ) ( S Tayl  ( ( S  D n F ) `
 0 ) ) B ) )
136, 12eqeq12d 2299 . . . . 5  |-  ( m  =  0  ->  (
( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  m
)  =  ( ( N  +  ( M  -  m ) ) ( S Tayl  ( ( S  D n F ) `  m ) ) B )  <->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) ` 
0 )  =  ( ( N  +  ( M  -  0 ) ) ( S Tayl  (
( S  D n F ) `  0
) ) B ) ) )
1413imbi2d 307 . . . 4  |-  ( m  =  0  ->  (
( ph  ->  ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 m )  =  ( ( N  +  ( M  -  m
) ) ( S Tayl  ( ( S  D n F ) `  m
) ) B ) )  <->  ( ph  ->  ( ( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  0 )  =  ( ( N  +  ( M  - 
0 ) ) ( S Tayl  ( ( S  D n F ) `
 0 ) ) B ) ) ) )
15 fveq2 5527 . . . . . 6  |-  ( m  =  n  ->  (
( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  m )  =  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n ) )
16 fveq2 5527 . . . . . . . 8  |-  ( m  =  n  ->  (
( S  D n F ) `  m
)  =  ( ( S  D n F ) `  n ) )
1716oveq2d 5876 . . . . . . 7  |-  ( m  =  n  ->  ( S Tayl  ( ( S  D n F ) `  m
) )  =  ( S Tayl  ( ( S  D n F ) `
 n ) ) )
18 oveq2 5868 . . . . . . . 8  |-  ( m  =  n  ->  ( M  -  m )  =  ( M  -  n ) )
1918oveq2d 5876 . . . . . . 7  |-  ( m  =  n  ->  ( N  +  ( M  -  m ) )  =  ( N  +  ( M  -  n ) ) )
20 eqidd 2286 . . . . . . 7  |-  ( m  =  n  ->  B  =  B )
2117, 19, 20oveq123d 5881 . . . . . 6  |-  ( m  =  n  ->  (
( N  +  ( M  -  m ) ) ( S Tayl  (
( S  D n F ) `  m
) ) B )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  D n F ) `
 n ) ) B ) )
2215, 21eqeq12d 2299 . . . . 5  |-  ( m  =  n  ->  (
( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  m
)  =  ( ( N  +  ( M  -  m ) ) ( S Tayl  ( ( S  D n F ) `  m ) ) B )  <->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  (
( S  D n F ) `  n
) ) B ) ) )
2322imbi2d 307 . . . 4  |-  ( m  =  n  ->  (
( ph  ->  ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 m )  =  ( ( N  +  ( M  -  m
) ) ( S Tayl  ( ( S  D n F ) `  m
) ) B ) )  <->  ( ph  ->  ( ( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  D n F ) `
 n ) ) B ) ) ) )
24 fveq2 5527 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  m )  =  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) ) )
25 fveq2 5527 . . . . . . . 8  |-  ( m  =  ( n  + 
1 )  ->  (
( S  D n F ) `  m
)  =  ( ( S  D n F ) `  ( n  +  1 ) ) )
2625oveq2d 5876 . . . . . . 7  |-  ( m  =  ( n  + 
1 )  ->  ( S Tayl  ( ( S  D n F ) `  m
) )  =  ( S Tayl  ( ( S  D n F ) `
 ( n  + 
1 ) ) ) )
27 oveq2 5868 . . . . . . . 8  |-  ( m  =  ( n  + 
1 )  ->  ( M  -  m )  =  ( M  -  ( n  +  1
) ) )
2827oveq2d 5876 . . . . . . 7  |-  ( m  =  ( n  + 
1 )  ->  ( N  +  ( M  -  m ) )  =  ( N  +  ( M  -  ( n  +  1 ) ) ) )
29 eqidd 2286 . . . . . . 7  |-  ( m  =  ( n  + 
1 )  ->  B  =  B )
3026, 28, 29oveq123d 5881 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
( N  +  ( M  -  m ) ) ( S Tayl  (
( S  D n F ) `  m
) ) B )  =  ( ( N  +  ( M  -  ( n  +  1
) ) ) ( S Tayl  ( ( S  D n F ) `
 ( n  + 
1 ) ) ) B ) )
3124, 30eqeq12d 2299 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  m
)  =  ( ( N  +  ( M  -  m ) ) ( S Tayl  ( ( S  D n F ) `  m ) ) B )  <->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( ( N  +  ( M  -  ( n  +  1 ) ) ) ( S Tayl  (
( S  D n F ) `  (
n  +  1 ) ) ) B ) ) )
3231imbi2d 307 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 m )  =  ( ( N  +  ( M  -  m
) ) ( S Tayl  ( ( S  D n F ) `  m
) ) B ) )  <->  ( ph  ->  ( ( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  ( n  +  1 ) )  =  ( ( N  +  ( M  -  ( n  +  1
) ) ) ( S Tayl  ( ( S  D n F ) `
 ( n  + 
1 ) ) ) B ) ) ) )
33 fveq2 5527 . . . . . 6  |-  ( m  =  M  ->  (
( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  m )  =  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M ) )
34 fveq2 5527 . . . . . . . 8  |-  ( m  =  M  ->  (
( S  D n F ) `  m
)  =  ( ( S  D n F ) `  M ) )
3534oveq2d 5876 . . . . . . 7  |-  ( m  =  M  ->  ( S Tayl  ( ( S  D n F ) `  m
) )  =  ( S Tayl  ( ( S  D n F ) `
 M ) ) )
36 oveq2 5868 . . . . . . . 8  |-  ( m  =  M  ->  ( M  -  m )  =  ( M  -  M ) )
3736oveq2d 5876 . . . . . . 7  |-  ( m  =  M  ->  ( N  +  ( M  -  m ) )  =  ( N  +  ( M  -  M ) ) )
38 eqidd 2286 . . . . . . 7  |-  ( m  =  M  ->  B  =  B )
3935, 37, 38oveq123d 5881 . . . . . 6  |-  ( m  =  M  ->  (
( N  +  ( M  -  m ) ) ( S Tayl  (
( S  D n F ) `  m
) ) B )  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  ( ( S  D n F ) `
 M ) ) B ) )
4033, 39eqeq12d 2299 . . . . 5  |-  ( m  =  M  ->  (
( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  m
)  =  ( ( N  +  ( M  -  m ) ) ( S Tayl  ( ( S  D n F ) `  m ) ) B )  <->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M )  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  (
( S  D n F ) `  M
) ) B ) ) )
4140imbi2d 307 . . . 4  |-  ( m  =  M  ->  (
( ph  ->  ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 m )  =  ( ( N  +  ( M  -  m
) ) ( S Tayl  ( ( S  D n F ) `  m
) ) B ) )  <->  ( ph  ->  ( ( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  M )  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  ( ( S  D n F ) `
 M ) ) B ) ) ) )
42 ssid 3199 . . . . . . . 8  |-  CC  C_  CC
4342a1i 10 . . . . . . 7  |-  ( ph  ->  CC  C_  CC )
44 mapsspm 6803 . . . . . . . 8  |-  ( CC 
^m  CC )  C_  ( CC  ^pm  CC )
45 dvntaylp.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  { RR ,  CC } )
46 dvntaylp.f . . . . . . . . . 10  |-  ( ph  ->  F : A --> CC )
47 dvntaylp.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  S )
48 dvntaylp.n . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
4948, 1nn0addcld 10024 . . . . . . . . . 10  |-  ( ph  ->  ( N  +  M
)  e.  NN0 )
50 dvntaylp.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  dom  (
( S  D n F ) `  ( N  +  M )
) )
51 eqid 2285 . . . . . . . . . 10  |-  ( ( N  +  M ) ( S Tayl  F ) B )  =  ( ( N  +  M
) ( S Tayl  F
) B )
5245, 46, 47, 49, 50, 51taylpf 19747 . . . . . . . . 9  |-  ( ph  ->  ( ( N  +  M ) ( S Tayl 
F ) B ) : CC --> CC )
53 cnex 8820 . . . . . . . . . 10  |-  CC  e.  _V
5453, 53elmap 6798 . . . . . . . . 9  |-  ( ( ( N  +  M
) ( S Tayl  F
) B )  e.  ( CC  ^m  CC ) 
<->  ( ( N  +  M ) ( S Tayl 
F ) B ) : CC --> CC )
5552, 54sylibr 203 . . . . . . . 8  |-  ( ph  ->  ( ( N  +  M ) ( S Tayl 
F ) B )  e.  ( CC  ^m  CC ) )
5644, 55sseldi 3180 . . . . . . 7  |-  ( ph  ->  ( ( N  +  M ) ( S Tayl 
F ) B )  e.  ( CC  ^pm  CC ) )
57 dvn0 19275 . . . . . . 7  |-  ( ( CC  C_  CC  /\  (
( N  +  M
) ( S Tayl  F
) B )  e.  ( CC  ^pm  CC ) )  ->  (
( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  0 )  =  ( ( N  +  M ) ( S Tayl  F ) B ) )
5843, 56, 57syl2anc 642 . . . . . 6  |-  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  0
)  =  ( ( N  +  M ) ( S Tayl  F ) B ) )
59 recnprss 19256 . . . . . . . . . 10  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
6045, 59syl 15 . . . . . . . . 9  |-  ( ph  ->  S  C_  CC )
6153a1i 10 . . . . . . . . . 10  |-  ( ph  ->  CC  e.  _V )
62 elpm2r 6790 . . . . . . . . . 10  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : A --> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
6361, 45, 46, 47, 62syl22anc 1183 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
64 dvn0 19275 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( S  D n F ) `  0
)  =  F )
6560, 63, 64syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( ( S  D n F ) `  0
)  =  F )
6665oveq2d 5876 . . . . . . 7  |-  ( ph  ->  ( S Tayl  ( ( S  D n F ) `  0 ) )  =  ( S Tayl 
F ) )
671nn0cnd 10022 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
6867subid1d 9148 . . . . . . . 8  |-  ( ph  ->  ( M  -  0 )  =  M )
6968oveq2d 5876 . . . . . . 7  |-  ( ph  ->  ( N  +  ( M  -  0 ) )  =  ( N  +  M ) )
70 eqidd 2286 . . . . . . 7  |-  ( ph  ->  B  =  B )
7166, 69, 70oveq123d 5881 . . . . . 6  |-  ( ph  ->  ( ( N  +  ( M  -  0
) ) ( S Tayl  ( ( S  D n F ) `  0
) ) B )  =  ( ( N  +  M ) ( S Tayl  F ) B ) )
7258, 71eqtr4d 2320 . . . . 5  |-  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  0
)  =  ( ( N  +  ( M  -  0 ) ) ( S Tayl  ( ( S  D n F ) `  0 ) ) B ) )
7372a1i 10 . . . 4  |-  ( M  e.  ( ZZ>= `  0
)  ->  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  0
)  =  ( ( N  +  ( M  -  0 ) ) ( S Tayl  ( ( S  D n F ) `  0 ) ) B ) ) )
74 oveq2 5868 . . . . . . 7  |-  ( ( ( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  D n F ) `
 n ) ) B )  ->  ( CC  _D  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n ) )  =  ( CC  _D  (
( N  +  ( M  -  n ) ) ( S Tayl  (
( S  D n F ) `  n
) ) B ) ) )
7542a1i 10 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  CC  C_  CC )
7656adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  M ) ( S Tayl  F ) B )  e.  ( CC 
^pm  CC ) )
77 elfzouz 10881 . . . . . . . . . . 11  |-  ( n  e.  ( 0..^ M )  ->  n  e.  ( ZZ>= `  0 )
)
7877adantl 452 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  n  e.  (
ZZ>= `  0 ) )
7978, 2syl6eleqr 2376 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  n  e.  NN0 )
80 dvnp1 19276 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  (
( N  +  M
) ( S Tayl  F
) B )  e.  ( CC  ^pm  CC )  /\  n  e.  NN0 )  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( CC  _D  ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 n ) ) )
8175, 76, 79, 80syl3anc 1182 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( CC  _D  ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 n ) ) )
8245adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  S  e.  { RR ,  CC } )
8363adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  F  e.  ( CC  ^pm  S )
)
84 dvnf 19278 . . . . . . . . . . 11  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  n  e.  NN0 )  ->  ( ( S  D n F ) `
 n ) : dom  ( ( S  D n F ) `
 n ) --> CC )
8582, 83, 79, 84syl3anc 1182 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  D n F ) `
 n ) : dom  ( ( S  D n F ) `
 n ) --> CC )
86 dvnbss 19279 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  n  e.  NN0 )  ->  dom  ( ( S  D n F ) `  n ) 
C_  dom  F )
8782, 83, 79, 86syl3anc 1182 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  ( ( S  D n F ) `
 n )  C_  dom  F )
88 fdm 5395 . . . . . . . . . . . . . 14  |-  ( F : A --> CC  ->  dom 
F  =  A )
8946, 88syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  F  =  A )
9089adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  F  =  A )
9187, 90sseqtrd 3216 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  ( ( S  D n F ) `
 n )  C_  A )
9247adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  A  C_  S
)
9391, 92sstrd 3191 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  ( ( S  D n F ) `
 n )  C_  S )
9448adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  N  e.  NN0 )
95 fzofzp1 10918 . . . . . . . . . . . . 13  |-  ( n  e.  ( 0..^ M )  ->  ( n  +  1 )  e.  ( 0 ... M
) )
9695adantl 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( n  + 
1 )  e.  ( 0 ... M ) )
97 fznn0sub 10826 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( 0 ... M )  ->  ( M  -  ( n  +  1 ) )  e.  NN0 )
9896, 97syl 15 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( M  -  ( n  +  1
) )  e.  NN0 )
9994, 98nn0addcld 10024 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( M  -  (
n  +  1 ) ) )  e.  NN0 )
10050adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  B  e.  dom  ( ( S  D n F ) `  ( N  +  M )
) )
101 elfzofz 10891 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 0..^ M )  ->  n  e.  ( 0 ... M
) )
102101adantl 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  n  e.  ( 0 ... M ) )
103 fznn0sub 10826 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( 0 ... M )  ->  ( M  -  n )  e.  NN0 )
104102, 103syl 15 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( M  -  n )  e.  NN0 )
10594, 104nn0addcld 10024 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( M  -  n
) )  e.  NN0 )
106 dvnadd 19280 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( n  e.  NN0  /\  ( N  +  ( M  -  n ) )  e.  NN0 )
)  ->  ( ( S  D n ( ( S  D n F ) `  n ) ) `  ( N  +  ( M  -  n ) ) )  =  ( ( S  D n F ) `
 ( n  +  ( N  +  ( M  -  n )
) ) ) )
10782, 83, 79, 105, 106syl22anc 1183 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  D n ( ( S  D n F ) `  n ) ) `  ( N  +  ( M  -  n ) ) )  =  ( ( S  D n F ) `
 ( n  +  ( N  +  ( M  -  n )
) ) ) )
10848nn0cnd 10022 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  CC )
109108adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  N  e.  CC )
11098nn0cnd 10022 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( M  -  ( n  +  1
) )  e.  CC )
111 ax-1cn 8797 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
112111a1i 10 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  1  e.  CC )
113109, 110, 112addassd 8859 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 )  =  ( N  +  ( ( M  -  ( n  +  1 ) )  +  1 ) ) )
11467adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  M  e.  CC )
11579nn0cnd 10022 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  n  e.  CC )
116114, 115, 112nppcan2d 9185 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( M  -  ( n  + 
1 ) )  +  1 )  =  ( M  -  n ) )
117116oveq2d 5876 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( ( M  -  ( n  +  1
) )  +  1 ) )  =  ( N  +  ( M  -  n ) ) )
118113, 117eqtrd 2317 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 )  =  ( N  +  ( M  -  n ) ) )
119118fveq2d 5531 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  D n ( ( S  D n F ) `  n ) ) `  ( ( N  +  ( M  -  ( n  + 
1 ) ) )  +  1 ) )  =  ( ( S  D n ( ( S  D n F ) `  n ) ) `  ( N  +  ( M  -  n ) ) ) )
120115, 114pncan3d 9162 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( n  +  ( M  -  n
) )  =  M )
121120oveq2d 5876 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( n  +  ( M  -  n )
) )  =  ( N  +  M ) )
122114, 115subcld 9159 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( M  -  n )  e.  CC )
123109, 115, 122add12d 9035 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( n  +  ( M  -  n )
) )  =  ( n  +  ( N  +  ( M  -  n ) ) ) )
124121, 123eqtr3d 2319 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  M )  =  ( n  +  ( N  +  ( M  -  n ) ) ) )
125124fveq2d 5531 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  D n F ) `
 ( N  +  M ) )  =  ( ( S  D n F ) `  (
n  +  ( N  +  ( M  -  n ) ) ) ) )
126107, 119, 1253eqtr4d 2327 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  D n ( ( S  D n F ) `  n ) ) `  ( ( N  +  ( M  -  ( n  + 
1 ) ) )  +  1 ) )  =  ( ( S  D n F ) `
 ( N  +  M ) ) )
127126dmeqd 4883 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  ( ( S  D n ( ( S  D n F ) `  n ) ) `  ( ( N  +  ( M  -  ( n  + 
1 ) ) )  +  1 ) )  =  dom  ( ( S  D n F ) `  ( N  +  M ) ) )
128100, 127eleqtrrd 2362 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  B  e.  dom  ( ( S  D n ( ( S  D n F ) `
 n ) ) `
 ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 ) ) )
12982, 85, 93, 99, 128dvtaylp 19751 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( CC  _D  ( ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 ) ( S Tayl  ( ( S  D n F ) `  n
) ) B ) )  =  ( ( N  +  ( M  -  ( n  + 
1 ) ) ) ( S Tayl  ( S  _D  ( ( S  D n F ) `
 n ) ) ) B ) )
130118oveq1d 5875 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( ( N  +  ( M  -  ( n  + 
1 ) ) )  +  1 ) ( S Tayl  ( ( S  D n F ) `
 n ) ) B )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  (
( S  D n F ) `  n
) ) B ) )
131130oveq2d 5876 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( CC  _D  ( ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 ) ( S Tayl  ( ( S  D n F ) `  n
) ) B ) )  =  ( CC 
_D  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  D n F ) `
 n ) ) B ) ) )
13260adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  S  C_  CC )
133 dvnp1 19276 . . . . . . . . . . . . 13  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
)  /\  n  e.  NN0 )  ->  ( ( S  D n F ) `
 ( n  + 
1 ) )  =  ( S  _D  (
( S  D n F ) `  n
) ) )
134132, 83, 79, 133syl3anc 1182 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  D n F ) `
 ( n  + 
1 ) )  =  ( S  _D  (
( S  D n F ) `  n
) ) )
135134oveq2d 5876 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( S Tayl  (
( S  D n F ) `  (
n  +  1 ) ) )  =  ( S Tayl  ( S  _D  ( ( S  D n F ) `  n
) ) ) )
136135eqcomd 2290 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( S Tayl  ( S  _D  ( ( S  D n F ) `
 n ) ) )  =  ( S Tayl  ( ( S  D n F ) `  (
n  +  1 ) ) ) )
137136oveqd 5877 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  ( M  -  ( n  +  1
) ) ) ( S Tayl  ( S  _D  ( ( S  D n F ) `  n
) ) ) B )  =  ( ( N  +  ( M  -  ( n  + 
1 ) ) ) ( S Tayl  ( ( S  D n F ) `  ( n  +  1 ) ) ) B ) )
138129, 131, 1373eqtr3rd 2326 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  ( M  -  ( n  +  1
) ) ) ( S Tayl  ( ( S  D n F ) `
 ( n  + 
1 ) ) ) B )  =  ( CC  _D  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  D n F ) `  n ) ) B ) ) )
13981, 138eqeq12d 2299 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 ( n  + 
1 ) )  =  ( ( N  +  ( M  -  (
n  +  1 ) ) ) ( S Tayl  ( ( S  D n F ) `  (
n  +  1 ) ) ) B )  <-> 
( CC  _D  (
( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  n ) )  =  ( CC 
_D  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  D n F ) `
 n ) ) B ) ) ) )
14074, 139syl5ibr 212 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 n )  =  ( ( N  +  ( M  -  n
) ) ( S Tayl  ( ( S  D n F ) `  n
) ) B )  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( ( N  +  ( M  -  ( n  +  1 ) ) ) ( S Tayl  (
( S  D n F ) `  (
n  +  1 ) ) ) B ) ) )
141140expcom 424 . . . . 5  |-  ( n  e.  ( 0..^ M )  ->  ( ph  ->  ( ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  (
( S  D n F ) `  n
) ) B )  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( ( N  +  ( M  -  ( n  +  1 ) ) ) ( S Tayl  (
( S  D n F ) `  (
n  +  1 ) ) ) B ) ) ) )
142141a2d 23 . . . 4  |-  ( n  e.  ( 0..^ M )  ->  ( ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  (
( S  D n F ) `  n
) ) B ) )  ->  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  (
n  +  1 ) )  =  ( ( N  +  ( M  -  ( n  + 
1 ) ) ) ( S Tayl  ( ( S  D n F ) `  ( n  +  1 ) ) ) B ) ) ) )
14314, 23, 32, 41, 73, 142fzind2 10925 . . 3  |-  ( M  e.  ( 0 ... M )  ->  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M )  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  (
( S  D n F ) `  M
) ) B ) ) )
1445, 143mpcom 32 . 2  |-  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M
)  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  ( ( S  D n F ) `  M ) ) B ) )
14567subidd 9147 . . . . 5  |-  ( ph  ->  ( M  -  M
)  =  0 )
146145oveq2d 5876 . . . 4  |-  ( ph  ->  ( N  +  ( M  -  M ) )  =  ( N  +  0 ) )
147108addid1d 9014 . . . 4  |-  ( ph  ->  ( N  +  0 )  =  N )
148146, 147eqtrd 2317 . . 3  |-  ( ph  ->  ( N  +  ( M  -  M ) )  =  N )
149148oveq1d 5875 . 2  |-  ( ph  ->  ( ( N  +  ( M  -  M
) ) ( S Tayl  ( ( S  D n F ) `  M
) ) B )  =  ( N ( S Tayl  ( ( S  D n F ) `
 M ) ) B ) )
150144, 149eqtrd 2317 1  |-  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M
)  =  ( N ( S Tayl  ( ( S  D n F ) `  M ) ) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   _Vcvv 2790    C_ wss 3154   {cpr 3643   dom cdm 4691   -->wf 5253   ` cfv 5257  (class class class)co 5860    ^m cmap 6774    ^pm cpm 6775   CCcc 8737   RRcr 8738   0cc0 8739   1c1 8740    + caddc 8742    - cmin 9039   NN0cn0 9967   ZZ>=cuz 10232   ...cfz 10784  ..^cfzo 10872    _D cdv 19215    D ncdvn 19216   Tayl ctayl 19734
This theorem is referenced by:  dvntaylp0  19753  taylthlem1  19754
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-icc 10665  df-fz 10785  df-fzo 10873  df-seq 11049  df-exp 11107  df-fac 11291  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-sum 12161  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-rest 13329  df-topn 13330  df-topgen 13346  df-pt 13347  df-prds 13350  df-xrs 13405  df-0g 13406  df-gsum 13407  df-qtop 13412  df-imas 13413  df-xps 13415  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-submnd 14418  df-grp 14491  df-minusg 14492  df-mulg 14494  df-cntz 14795  df-cmn 15093  df-abl 15094  df-mgp 15328  df-rng 15342  df-cring 15343  df-ur 15344  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cld 16758  df-ntr 16759  df-cls 16760  df-nei 16837  df-lp 16870  df-perf 16871  df-cn 16959  df-cnp 16960  df-haus 17045  df-tx 17259  df-hmeo 17448  df-fbas 17522  df-fg 17523  df-fil 17543  df-fm 17635  df-flim 17636  df-flf 17637  df-tsms 17811  df-xms 17887  df-ms 17888  df-tms 17889  df-cncf 18384  df-limc 19218  df-dv 19219  df-dvn 19220  df-tayl 19736
  Copyright terms: Public domain W3C validator