MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvply1 Structured version   Unicode version

Theorem dvply1 20193
Description: Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvply1.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
dvply1.g  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
dvply1.a  |-  ( ph  ->  A : NN0 --> CC )
dvply1.b  |-  B  =  ( k  e.  NN0  |->  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) ) )
dvply1.n  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
dvply1  |-  ( ph  ->  ( CC  _D  F
)  =  G )
Distinct variable groups:    ph, z, k   
z, A, k    z, B    k, N, z
Allowed substitution hints:    B( k)    F( z, k)    G( z, k)

Proof of Theorem dvply1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 dvply1.f . . 3  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
21oveq2d 6089 . 2  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
_D  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
z ^ k ) ) ) ) )
3 eqid 2435 . . . . . 6  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
43cnfldtop 18810 . . . . 5  |-  ( TopOpen ` fld )  e.  Top
53cnfldtopon 18809 . . . . . . 7  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
65toponunii 16989 . . . . . 6  |-  CC  =  U. ( TopOpen ` fld )
76restid 13653 . . . . 5  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
84, 7ax-mp 8 . . . 4  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
98eqcomi 2439 . . 3  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
10 cnex 9063 . . . . 5  |-  CC  e.  _V
1110prid2 3905 . . . 4  |-  CC  e.  { RR ,  CC }
1211a1i 11 . . 3  |-  ( ph  ->  CC  e.  { RR ,  CC } )
136topopn 16971 . . . 4  |-  ( (
TopOpen ` fld )  e.  Top  ->  CC  e.  ( TopOpen ` fld ) )
144, 13mp1i 12 . . 3  |-  ( ph  ->  CC  e.  ( TopOpen ` fld )
)
15 fzfid 11304 . . 3  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
16 dvply1.a . . . . . . 7  |-  ( ph  ->  A : NN0 --> CC )
17 elfznn0 11075 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
18 ffvelrn 5860 . . . . . . 7  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
1916, 17, 18syl2an 464 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
2019adantr 452 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  ( A `  k )  e.  CC )
21 simpr 448 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  z  e.  CC )
2217ad2antlr 708 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  k  e.  NN0 )
2321, 22expcld 11515 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  (
z ^ k )  e.  CC )
2420, 23mulcld 9100 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
25243impa 1148 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  ( ( A `  k )  x.  ( z ^
k ) )  e.  CC )
26193adant3 977 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  ( A `
 k )  e.  CC )
27 0cn 9076 . . . . . 6  |-  0  e.  CC
2827a1i 11 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  k  =  0 )  -> 
0  e.  CC )
29 simpl2 961 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
k  e.  ( 0 ... N ) )
3029, 17syl 16 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
k  e.  NN0 )
3130nn0cnd 10268 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
k  e.  CC )
32 simpl3 962 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
z  e.  CC )
33 simpr 448 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  ->  -.  k  =  0
)
34 elnn0 10215 . . . . . . . . . 10  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
3530, 34sylib 189 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
( k  e.  NN  \/  k  =  0
) )
36 orel2 373 . . . . . . . . 9  |-  ( -.  k  =  0  -> 
( ( k  e.  NN  \/  k  =  0 )  ->  k  e.  NN ) )
3733, 35, 36sylc 58 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
k  e.  NN )
38 nnm1nn0 10253 . . . . . . . 8  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
3937, 38syl 16 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
( k  -  1 )  e.  NN0 )
4032, 39expcld 11515 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
( z ^ (
k  -  1 ) )  e.  CC )
4131, 40mulcld 9100 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
( k  x.  (
z ^ ( k  -  1 ) ) )  e.  CC )
4228, 41ifclda 3758 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) )  e.  CC )
4326, 42mulcld 9100 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  ( ( A `  k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ (
k  -  1 ) ) ) ) )  e.  CC )
4411a1i 11 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  CC  e.  { RR ,  CC } )
45 c0ex 9077 . . . . . 6  |-  0  e.  _V
46 ovex 6098 . . . . . 6  |-  ( k  x.  ( z ^
( k  -  1 ) ) )  e. 
_V
4745, 46ifex 3789 . . . . 5  |-  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) )  e.  _V
4847a1i 11 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  e.  _V )
4917adantl 453 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
50 dvexp2 19832 . . . . 5  |-  ( k  e.  NN0  ->  ( CC 
_D  ( z  e.  CC  |->  ( z ^
k ) ) )  =  ( z  e.  CC  |->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ (
k  -  1 ) ) ) ) ) )
5149, 50syl 16 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( CC  _D  ( z  e.  CC  |->  ( z ^
k ) ) )  =  ( z  e.  CC  |->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ (
k  -  1 ) ) ) ) ) )
5244, 23, 48, 51, 19dvmptcmul 19842 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( CC  _D  ( z  e.  CC  |->  ( ( A `
 k )  x.  ( z ^ k
) ) ) )  =  ( z  e.  CC  |->  ( ( A `
 k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) ) ) )
539, 3, 12, 14, 15, 25, 43, 52dvmptfsum 19851 . 2  |-  ( ph  ->  ( CC  _D  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) ) ) )
54 elfznn 11072 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN )
5554nnne0d 10036 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... N )  ->  k  =/=  0 )
5655neneqd 2614 . . . . . . . . 9  |-  ( k  e.  ( 1 ... N )  ->  -.  k  =  0 )
5756adantl 453 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  -.  k  =  0 )
58 iffalse 3738 . . . . . . . 8  |-  ( -.  k  =  0  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  =  ( k  x.  ( z ^
( k  -  1 ) ) ) )
5957, 58syl 16 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  =  ( k  x.  ( z ^
( k  -  1 ) ) ) )
6059oveq2d 6089 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) )  =  ( ( A `  k )  x.  ( k  x.  ( z ^ (
k  -  1 ) ) ) ) )
6160sumeq2dv 12489 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 1 ... N
) ( ( A `
 k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  = 
sum_ k  e.  ( 1 ... N ) ( ( A `  k )  x.  (
k  x.  ( z ^ ( k  - 
1 ) ) ) ) )
62 1nn0 10229 . . . . . . . 8  |-  1  e.  NN0
63 nn0uz 10512 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
6462, 63eleqtri 2507 . . . . . . 7  |-  1  e.  ( ZZ>= `  0 )
65 fzss1 11083 . . . . . . 7  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
6664, 65mp1i 12 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 1 ... N )  C_  ( 0 ... N
) )
6716adantr 452 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  A : NN0
--> CC )
6854nnnn0d 10266 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN0 )
6967, 68, 18syl2an 464 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  ( A `  k )  e.  CC )
7055adantl 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  k  =/=  0 )
7170neneqd 2614 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  -.  k  =  0 )
7271, 58syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  =  ( k  x.  ( z ^
( k  -  1 ) ) ) )
7368adantl 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  k  e.  NN0 )
7473nn0cnd 10268 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  k  e.  CC )
75 simplr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  z  e.  CC )
7654, 38syl 16 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... N )  ->  (
k  -  1 )  e.  NN0 )
7776adantl 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
k  -  1 )  e.  NN0 )
7875, 77expcld 11515 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
z ^ ( k  -  1 ) )  e.  CC )
7974, 78mulcld 9100 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
k  x.  ( z ^ ( k  - 
1 ) ) )  e.  CC )
8072, 79eqeltrd 2509 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  e.  CC )
8169, 80mulcld 9100 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) )  e.  CC )
82 eldifn 3462 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... N )  \ 
( 1 ... N
) )  ->  -.  k  e.  ( 1 ... N ) )
83 0p1e1 10085 . . . . . . . . . . . . . 14  |-  ( 0  +  1 )  =  1
8483oveq1i 6083 . . . . . . . . . . . . 13  |-  ( ( 0  +  1 ) ... N )  =  ( 1 ... N
)
8584eleq2i 2499 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0  +  1 ) ... N )  <->  k  e.  ( 1 ... N
) )
8682, 85sylnibr 297 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... N )  \ 
( 1 ... N
) )  ->  -.  k  e.  ( (
0  +  1 ) ... N ) )
8786adantl 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  -.  k  e.  ( ( 0  +  1 ) ... N
) )
88 eldifi 3461 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... N )  \ 
( 1 ... N
) )  ->  k  e.  ( 0 ... N
) )
8988adantl 453 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  k  e.  ( 0 ... N
) )
90 dvply1.n . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN0 )
9190, 63syl6eleq 2525 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
9291ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  N  e.  ( ZZ>= `  0 )
)
93 elfzp12 11118 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( k  e.  ( 0 ... N
)  <->  ( k  =  0  \/  k  e.  ( ( 0  +  1 ) ... N
) ) ) )
9492, 93syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( k  e.  ( 0 ... N
)  <->  ( k  =  0  \/  k  e.  ( ( 0  +  1 ) ... N
) ) ) )
9589, 94mpbid 202 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( k  =  0  \/  k  e.  ( ( 0  +  1 ) ... N
) ) )
96 orel2 373 . . . . . . . . . 10  |-  ( -.  k  e.  ( ( 0  +  1 ) ... N )  -> 
( ( k  =  0  \/  k  e.  ( ( 0  +  1 ) ... N
) )  ->  k  =  0 ) )
9787, 95, 96sylc 58 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  k  = 
0 )
98 iftrue 3737 . . . . . . . . 9  |-  ( k  =  0  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  =  0 )
9997, 98syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  if (
k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) )  =  0 )
10099oveq2d 6089 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( ( A `  k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  =  ( ( A `  k )  x.  0 ) )
10167, 17, 18syl2an 464 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
102101mul01d 9257 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  0 )  =  0 )
10388, 102sylan2 461 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( ( A `  k )  x.  0 )  =  0 )
104100, 103eqtrd 2467 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( ( A `  k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  =  0 )
105 fzfid 11304 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
10666, 81, 104, 105fsumss 12511 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 1 ... N
) ( ( A `
 k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) ) ) )
107 elfznn0 11075 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 0 ... ( N  -  1 ) )  ->  j  e.  NN0 )
108107adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  j  e.  NN0 )
109108nn0cnd 10268 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  j  e.  CC )
110 ax-1cn 9040 . . . . . . . . . . . . 13  |-  1  e.  CC
111 pncan 9303 . . . . . . . . . . . . 13  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  +  1 )  -  1 )  =  j )
112109, 110, 111sylancl 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( j  +  1 )  -  1 )  =  j )
113112oveq2d 6089 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
z ^ ( ( j  +  1 )  -  1 ) )  =  ( z ^
j ) )
114113oveq2d 6089 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( j  +  1 )  x.  ( z ^ ( ( j  +  1 )  - 
1 ) ) )  =  ( ( j  +  1 )  x.  ( z ^ j
) ) )
115114oveq2d 6089 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( A `  (
j  +  1 ) )  x.  ( ( j  +  1 )  x.  ( z ^
( ( j  +  1 )  -  1 ) ) ) )  =  ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ j ) ) ) )
11616ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  A : NN0 --> CC )
117 peano2nn0 10252 . . . . . . . . . . . . 13  |-  ( j  e.  NN0  ->  ( j  +  1 )  e. 
NN0 )
118107, 117syl 16 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... ( N  -  1 ) )  ->  (
j  +  1 )  e.  NN0 )
119118adantl 453 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
j  +  1 )  e.  NN0 )
120116, 119ffvelrnd 5863 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A `  ( j  +  1 ) )  e.  CC )
121119nn0cnd 10268 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
j  +  1 )  e.  CC )
122 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  z  e.  CC )
123122, 108expcld 11515 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
z ^ j )  e.  CC )
124120, 121, 123mulassd 9103 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( A `  ( j  +  1 ) )  x.  (
j  +  1 ) )  x.  ( z ^ j ) )  =  ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ j ) ) ) )
125120, 121mulcomd 9101 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( A `  (
j  +  1 ) )  x.  ( j  +  1 ) )  =  ( ( j  +  1 )  x.  ( A `  (
j  +  1 ) ) ) )
126125oveq1d 6088 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( A `  ( j  +  1 ) )  x.  (
j  +  1 ) )  x.  ( z ^ j ) )  =  ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j
) ) )
127115, 124, 1263eqtr2d 2473 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( A `  (
j  +  1 ) )  x.  ( ( j  +  1 )  x.  ( z ^
( ( j  +  1 )  -  1 ) ) ) )  =  ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j
) ) )
128127sumeq2dv 12489 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ ( ( j  +  1 )  -  1 ) ) ) )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j ) ) )
129 1m1e0 10060 . . . . . . . . 9  |-  ( 1  -  1 )  =  0
130129oveq1i 6083 . . . . . . . 8  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
131130sumeq1i 12484 . . . . . . 7  |-  sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ ( ( j  +  1 )  -  1 ) ) ) )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( A `  (
j  +  1 ) )  x.  ( ( j  +  1 )  x.  ( z ^
( ( j  +  1 )  -  1 ) ) ) )
132 oveq1 6080 . . . . . . . . . 10  |-  ( k  =  j  ->  (
k  +  1 )  =  ( j  +  1 ) )
133132fveq2d 5724 . . . . . . . . . 10  |-  ( k  =  j  ->  ( A `  ( k  +  1 ) )  =  ( A `  ( j  +  1 ) ) )
134132, 133oveq12d 6091 . . . . . . . . 9  |-  ( k  =  j  ->  (
( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  =  ( ( j  +  1 )  x.  ( A `  (
j  +  1 ) ) ) )
135 oveq2 6081 . . . . . . . . 9  |-  ( k  =  j  ->  (
z ^ k )  =  ( z ^
j ) )
136134, 135oveq12d 6091 . . . . . . . 8  |-  ( k  =  j  ->  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k ) )  =  ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j
) ) )
137136cbvsumv 12482 . . . . . . 7  |-  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k
) )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j ) )
138128, 131, 1373eqtr4g 2492 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ ( ( j  +  1 )  -  1 ) ) ) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k ) ) )
139 1z 10303 . . . . . . . 8  |-  1  e.  ZZ
140139a1i 11 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  1  e.  ZZ )
14190adantr 452 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  N  e. 
NN0 )
142141nn0zd 10365 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  N  e.  ZZ )
14369, 79mulcld 9100 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
( A `  k
)  x.  ( k  x.  ( z ^
( k  -  1 ) ) ) )  e.  CC )
144 fveq2 5720 . . . . . . . 8  |-  ( k  =  ( j  +  1 )  ->  ( A `  k )  =  ( A `  ( j  +  1 ) ) )
145 id 20 . . . . . . . . 9  |-  ( k  =  ( j  +  1 )  ->  k  =  ( j  +  1 ) )
146 oveq1 6080 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  (
k  -  1 )  =  ( ( j  +  1 )  - 
1 ) )
147146oveq2d 6089 . . . . . . . . 9  |-  ( k  =  ( j  +  1 )  ->  (
z ^ ( k  -  1 ) )  =  ( z ^
( ( j  +  1 )  -  1 ) ) )
148145, 147oveq12d 6091 . . . . . . . 8  |-  ( k  =  ( j  +  1 )  ->  (
k  x.  ( z ^ ( k  - 
1 ) ) )  =  ( ( j  +  1 )  x.  ( z ^ (
( j  +  1 )  -  1 ) ) ) )
149144, 148oveq12d 6091 . . . . . . 7  |-  ( k  =  ( j  +  1 )  ->  (
( A `  k
)  x.  ( k  x.  ( z ^
( k  -  1 ) ) ) )  =  ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ ( ( j  +  1 )  -  1 ) ) ) ) )
150140, 140, 142, 143, 149fsumshftm 12556 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 1 ... N
) ( ( A `
 k )  x.  ( k  x.  (
z ^ ( k  -  1 ) ) ) )  =  sum_ j  e.  ( (
1  -  1 ) ... ( N  - 
1 ) ) ( ( A `  (
j  +  1 ) )  x.  ( ( j  +  1 )  x.  ( z ^
( ( j  +  1 )  -  1 ) ) ) ) )
151 elfznn0 11075 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
152151adantl 453 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  k  e.  NN0 )
153 ovex 6098 . . . . . . . . 9  |-  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  e. 
_V
154 dvply1.b . . . . . . . . . 10  |-  B  =  ( k  e.  NN0  |->  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) ) )
155154fvmpt2 5804 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  e.  _V )  ->  ( B `  k
)  =  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) ) )
156152, 153, 155sylancl 644 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( B `  k )  =  ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) ) )
157156oveq1d 6088 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  =  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k
) ) )
158157sumeq2dv 12489 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( B `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k ) ) )
159138, 150, 1583eqtr4d 2477 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 1 ... N
) ( ( A `
 k )  x.  ( k  x.  (
z ^ ( k  -  1 ) ) ) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( B `  k
)  x.  ( z ^ k ) ) )
16061, 106, 1593eqtr3d 2475 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  = 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( B `  k )  x.  (
z ^ k ) ) )
161160mpteq2dva 4287 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
162 dvply1.g . . 3  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
163161, 162eqtr4d 2470 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) ) )  =  G )
1642, 53, 1633eqtrd 2471 1  |-  ( ph  ->  ( CC  _D  F
)  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   _Vcvv 2948    \ cdif 3309    C_ wss 3312   ifcif 3731   {cpr 3807    e. cmpt 4258   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    - cmin 9283   NNcn 9992   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035   ^cexp 11374   sum_csu 12471   ↾t crest 13640   TopOpenctopn 13641  ℂfldccnfld 16695   Topctop 16950    _D cdv 19742
This theorem is referenced by:  dvply2g  20194
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-icc 10915  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-haus 17371  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-limc 19745  df-dv 19746
  Copyright terms: Public domain W3C validator