MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbl Unicode version

Theorem dyadmbl 18955
Description: Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
dyadmbl.2  |-  G  =  { z  e.  A  |  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }
dyadmbl.3  |-  ( ph  ->  A  C_  ran  F )
Assertion
Ref Expression
dyadmbl  |-  ( ph  ->  U. ( [,] " A
)  e.  dom  vol )
Distinct variable groups:    x, y    z, w, ph    x, w, y, A, z    z, G   
w, F, x, y, z
Allowed substitution hints:    ph( x, y)    G( x, y, w)

Proof of Theorem dyadmbl
Dummy variables  f 
a  b  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . 3  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
2 dyadmbl.2 . . 3  |-  G  =  { z  e.  A  |  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }
3 dyadmbl.3 . . 3  |-  ( ph  ->  A  C_  ran  F )
41, 2, 3dyadmbllem 18954 . 2  |-  ( ph  ->  U. ( [,] " A
)  =  U. ( [,] " G ) )
5 isfinite 7353 . . . 4  |-  ( G  e.  Fin  <->  G  ~<  om )
6 iccf 10742 . . . . . 6  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
7 ffun 5391 . . . . . 6  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  Fun  [,] )
8 funiunfv 5774 . . . . . 6  |-  ( Fun 
[,]  ->  U_ n  e.  G  ( [,] `  n )  =  U. ( [,] " G ) )
96, 7, 8mp2b 9 . . . . 5  |-  U_ n  e.  G  ( [,] `  n )  =  U. ( [,] " G )
10 simpr 447 . . . . . 6  |-  ( (
ph  /\  G  e.  Fin )  ->  G  e. 
Fin )
11 ssrab2 3258 . . . . . . . . . . . . . . . 16  |-  { z  e.  A  |  A. w  e.  A  (
( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }  C_  A
122, 11eqsstri 3208 . . . . . . . . . . . . . . 15  |-  G  C_  A
1312, 3syl5ss 3190 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  C_  ran  F )
141dyadf 18946 . . . . . . . . . . . . . . . 16  |-  F :
( ZZ  X.  NN0 )
--> (  <_  i^i  ( RR  X.  RR ) )
15 frn 5395 . . . . . . . . . . . . . . . 16  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  F 
C_  (  <_  i^i  ( RR  X.  RR ) ) )
1614, 15ax-mp 8 . . . . . . . . . . . . . . 15  |-  ran  F  C_  (  <_  i^i  ( RR  X.  RR ) )
17 inss2 3390 . . . . . . . . . . . . . . 15  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
1816, 17sstri 3188 . . . . . . . . . . . . . 14  |-  ran  F  C_  ( RR  X.  RR )
1913, 18syl6ss 3191 . . . . . . . . . . . . 13  |-  ( ph  ->  G  C_  ( RR  X.  RR ) )
2019adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  G  e.  Fin )  ->  G  C_  ( RR  X.  RR ) )
2120sselda 3180 . . . . . . . . . . 11  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  n  e.  ( RR  X.  RR ) )
22 1st2nd2 6159 . . . . . . . . . . 11  |-  ( n  e.  ( RR  X.  RR )  ->  n  = 
<. ( 1st `  n
) ,  ( 2nd `  n ) >. )
2321, 22syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >. )
2423fveq2d 5529 . . . . . . . . 9  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( [,] `  n )  =  ( [,] `  <. ( 1st `  n ) ,  ( 2nd `  n
) >. ) )
25 df-ov 5861 . . . . . . . . 9  |-  ( ( 1st `  n ) [,] ( 2nd `  n
) )  =  ( [,] `  <. ( 1st `  n ) ,  ( 2nd `  n
) >. )
2624, 25syl6eqr 2333 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( [,] `  n )  =  ( ( 1st `  n
) [,] ( 2nd `  n ) ) )
27 xp1st 6149 . . . . . . . . . 10  |-  ( n  e.  ( RR  X.  RR )  ->  ( 1st `  n )  e.  RR )
2821, 27syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( 1st `  n )  e.  RR )
29 xp2nd 6150 . . . . . . . . . 10  |-  ( n  e.  ( RR  X.  RR )  ->  ( 2nd `  n )  e.  RR )
3021, 29syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( 2nd `  n )  e.  RR )
31 iccmbl 18923 . . . . . . . . 9  |-  ( ( ( 1st `  n
)  e.  RR  /\  ( 2nd `  n )  e.  RR )  -> 
( ( 1st `  n
) [,] ( 2nd `  n ) )  e. 
dom  vol )
3228, 30, 31syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  (
( 1st `  n
) [,] ( 2nd `  n ) )  e. 
dom  vol )
3326, 32eqeltrd 2357 . . . . . . 7  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( [,] `  n )  e. 
dom  vol )
3433ralrimiva 2626 . . . . . 6  |-  ( (
ph  /\  G  e.  Fin )  ->  A. n  e.  G  ( [,] `  n )  e.  dom  vol )
35 finiunmbl 18901 . . . . . 6  |-  ( ( G  e.  Fin  /\  A. n  e.  G  ( [,] `  n )  e.  dom  vol )  ->  U_ n  e.  G  ( [,] `  n )  e.  dom  vol )
3610, 34, 35syl2anc 642 . . . . 5  |-  ( (
ph  /\  G  e.  Fin )  ->  U_ n  e.  G  ( [,] `  n )  e.  dom  vol )
379, 36syl5eqelr 2368 . . . 4  |-  ( (
ph  /\  G  e.  Fin )  ->  U. ( [,] " G )  e. 
dom  vol )
385, 37sylan2br 462 . . 3  |-  ( (
ph  /\  G  ~<  om )  ->  U. ( [,] " G )  e. 
dom  vol )
39 nnenom 11042 . . . . . . 7  |-  NN  ~~  om
40 ensym 6910 . . . . . . 7  |-  ( G 
~~  om  ->  om  ~~  G )
41 entr 6913 . . . . . . 7  |-  ( ( NN  ~~  om  /\  om 
~~  G )  ->  NN  ~~  G )
4239, 40, 41sylancr 644 . . . . . 6  |-  ( G 
~~  om  ->  NN  ~~  G )
43 bren 6871 . . . . . 6  |-  ( NN 
~~  G  <->  E. f 
f : NN -1-1-onto-> G )
4442, 43sylib 188 . . . . 5  |-  ( G 
~~  om  ->  E. f 
f : NN -1-1-onto-> G )
45 rnco2 5180 . . . . . . . . . 10  |-  ran  ( [,]  o.  f )  =  ( [,] " ran  f )
46 f1ofo 5479 . . . . . . . . . . . . 13  |-  ( f : NN -1-1-onto-> G  ->  f : NN -onto-> G )
4746adantl 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN -onto-> G )
48 forn 5454 . . . . . . . . . . . 12  |-  ( f : NN -onto-> G  ->  ran  f  =  G
)
4947, 48syl 15 . . . . . . . . . . 11  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  ran  f  =  G )
5049imaeq2d 5012 . . . . . . . . . 10  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  ( [,] " ran  f )  =  ( [,] " G
) )
5145, 50syl5eq 2327 . . . . . . . . 9  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  ran  ( [,]  o.  f )  =  ( [,] " G
) )
5251unieqd 3838 . . . . . . . 8  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  U. ran  ( [,]  o.  f )  =  U. ( [,] " G ) )
53 f1of 5472 . . . . . . . . . 10  |-  ( f : NN -1-1-onto-> G  ->  f : NN
--> G )
5413, 16syl6ss 3191 . . . . . . . . . 10  |-  ( ph  ->  G  C_  (  <_  i^i  ( RR  X.  RR ) ) )
55 fss 5397 . . . . . . . . . 10  |-  ( ( f : NN --> G  /\  G  C_  (  <_  i^i  ( RR  X.  RR ) ) )  -> 
f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
5653, 54, 55syl2anr 464 . . . . . . . . 9  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
57 fss 5397 . . . . . . . . . . . . . . 15  |-  ( ( f : NN --> G  /\  G  C_  ran  F )  ->  f : NN --> ran  F )
5853, 13, 57syl2anr 464 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN --> ran  F )
59 simpl 443 . . . . . . . . . . . . . 14  |-  ( ( a  e.  NN  /\  b  e.  NN )  ->  a  e.  NN )
60 ffvelrn 5663 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  F  /\  a  e.  NN )  ->  ( f `  a )  e.  ran  F )
6158, 59, 60syl2an 463 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  a )  e.  ran  F )
62 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( a  e.  NN  /\  b  e.  NN )  ->  b  e.  NN )
63 ffvelrn 5663 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  F  /\  b  e.  NN )  ->  ( f `  b )  e.  ran  F )
6458, 62, 63syl2an 463 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  b )  e.  ran  F )
651dyaddisj 18951 . . . . . . . . . . . . 13  |-  ( ( ( f `  a
)  e.  ran  F  /\  ( f `  b
)  e.  ran  F
)  ->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  \/  ( [,] `  (
f `  b )
)  C_  ( [,] `  ( f `  a
) )  \/  (
( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
6661, 64, 65syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  \/  ( [,] `  (
f `  b )
)  C_  ( [,] `  ( f `  a
) )  \/  (
( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
6753adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN --> G )
68 ffvelrn 5663 . . . . . . . . . . . . . . . . 17  |-  ( ( f : NN --> G  /\  b  e.  NN )  ->  ( f `  b
)  e.  G )
6967, 62, 68syl2an 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  b )  e.  G
)
7012, 69sseldi 3178 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  b )  e.  A
)
71 ffvelrn 5663 . . . . . . . . . . . . . . . . 17  |-  ( ( f : NN --> G  /\  a  e.  NN )  ->  ( f `  a
)  e.  G )
7267, 59, 71syl2an 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  a )  e.  G
)
73 fveq2 5525 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( f `  a )  ->  ( [,] `  z )  =  ( [,] `  (
f `  a )
) )
7473sseq1d 3205 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( f `  a )  ->  (
( [,] `  z
)  C_  ( [,] `  w )  <->  ( [,] `  ( f `  a
) )  C_  ( [,] `  w ) ) )
75 eqeq1 2289 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( f `  a )  ->  (
z  =  w  <->  ( f `  a )  =  w ) )
7674, 75imbi12d 311 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( f `  a )  ->  (
( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) ) )
7776ralbidv 2563 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( f `  a )  ->  ( A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  A. w  e.  A  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) ) )
7877, 2elrab2 2925 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  a )  e.  G  <->  ( (
f `  a )  e.  A  /\  A. w  e.  A  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) ) )
7978simprbi 450 . . . . . . . . . . . . . . . 16  |-  ( ( f `  a )  e.  G  ->  A. w  e.  A  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) )
8072, 79syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  A. w  e.  A  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) )
81 fveq2 5525 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  b )  ->  ( [,] `  w )  =  ( [,] `  (
f `  b )
) )
8281sseq2d 3206 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  b )  ->  (
( [,] `  (
f `  a )
)  C_  ( [,] `  w )  <->  ( [,] `  ( f `  a
) )  C_  ( [,] `  ( f `  b ) ) ) )
83 eqeq2 2292 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  b )  ->  (
( f `  a
)  =  w  <->  ( f `  a )  =  ( f `  b ) ) )
8482, 83imbi12d 311 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( f `  b )  ->  (
( ( [,] `  (
f `  a )
)  C_  ( [,] `  w )  ->  (
f `  a )  =  w )  <->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  ->  ( f `  a )  =  ( f `  b ) ) ) )
8584rspcv 2880 . . . . . . . . . . . . . . 15  |-  ( ( f `  b )  e.  A  ->  ( A. w  e.  A  ( ( [,] `  (
f `  a )
)  C_  ( [,] `  w )  ->  (
f `  a )  =  w )  ->  (
( [,] `  (
f `  a )
)  C_  ( [,] `  ( f `  b
) )  ->  (
f `  a )  =  ( f `  b ) ) ) )
8670, 80, 85sylc 56 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  ->  ( f `  a )  =  ( f `  b ) ) )
87 f1of1 5471 . . . . . . . . . . . . . . . . 17  |-  ( f : NN -1-1-onto-> G  ->  f : NN
-1-1-> G )
8887adantl 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN -1-1-> G )
89 f1fveq 5786 . . . . . . . . . . . . . . . 16  |-  ( ( f : NN -1-1-> G  /\  ( a  e.  NN  /\  b  e.  NN ) )  ->  ( (
f `  a )  =  ( f `  b )  <->  a  =  b ) )
9088, 89sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( (
f `  a )  =  ( f `  b )  <->  a  =  b ) )
91 orc 374 . . . . . . . . . . . . . . 15  |-  ( a  =  b  ->  (
a  =  b  \/  ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
9290, 91syl6bi 219 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( (
f `  a )  =  ( f `  b )  ->  (
a  =  b  \/  ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) ) )
9386, 92syld 40 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  ->  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) ) )
9412, 72sseldi 3178 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  a )  e.  A
)
95 fveq2 5525 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( f `  b )  ->  ( [,] `  z )  =  ( [,] `  (
f `  b )
) )
9695sseq1d 3205 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( f `  b )  ->  (
( [,] `  z
)  C_  ( [,] `  w )  <->  ( [,] `  ( f `  b
) )  C_  ( [,] `  w ) ) )
97 eqeq1 2289 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( f `  b )  ->  (
z  =  w  <->  ( f `  b )  =  w ) )
9896, 97imbi12d 311 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( f `  b )  ->  (
( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) ) )
9998ralbidv 2563 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( f `  b )  ->  ( A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  A. w  e.  A  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) ) )
10099, 2elrab2 2925 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  b )  e.  G  <->  ( (
f `  b )  e.  A  /\  A. w  e.  A  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) ) )
101100simprbi 450 . . . . . . . . . . . . . . . 16  |-  ( ( f `  b )  e.  G  ->  A. w  e.  A  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) )
10269, 101syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  A. w  e.  A  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) )
103 fveq2 5525 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  a )  ->  ( [,] `  w )  =  ( [,] `  (
f `  a )
) )
104103sseq2d 3206 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  a )  ->  (
( [,] `  (
f `  b )
)  C_  ( [,] `  w )  <->  ( [,] `  ( f `  b
) )  C_  ( [,] `  ( f `  a ) ) ) )
105 eqeq2 2292 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  a )  ->  (
( f `  b
)  =  w  <->  ( f `  b )  =  ( f `  a ) ) )
106 eqcom 2285 . . . . . . . . . . . . . . . . . 18  |-  ( ( f `  b )  =  ( f `  a )  <->  ( f `  a )  =  ( f `  b ) )
107105, 106syl6bb 252 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  a )  ->  (
( f `  b
)  =  w  <->  ( f `  a )  =  ( f `  b ) ) )
108104, 107imbi12d 311 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( f `  a )  ->  (
( ( [,] `  (
f `  b )
)  C_  ( [,] `  w )  ->  (
f `  b )  =  w )  <->  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  ( f `
 a ) )  ->  ( f `  a )  =  ( f `  b ) ) ) )
109108rspcv 2880 . . . . . . . . . . . . . . 15  |-  ( ( f `  a )  e.  A  ->  ( A. w  e.  A  ( ( [,] `  (
f `  b )
)  C_  ( [,] `  w )  ->  (
f `  b )  =  w )  ->  (
( [,] `  (
f `  b )
)  C_  ( [,] `  ( f `  a
) )  ->  (
f `  a )  =  ( f `  b ) ) ) )
11094, 102, 109sylc 56 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  ( f `
 a ) )  ->  ( f `  a )  =  ( f `  b ) ) )
111110, 92syld 40 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  ( f `
 a ) )  ->  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) ) )
112 olc 373 . . . . . . . . . . . . . 14  |-  ( ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/)  ->  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) )
113112a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( (
( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/)  ->  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) ) )
11493, 111, 1133jaod 1246 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( (
( [,] `  (
f `  a )
)  C_  ( [,] `  ( f `  b
) )  \/  ( [,] `  ( f `  b ) )  C_  ( [,] `  ( f `
 a ) )  \/  ( ( (,) `  ( f `  a
) )  i^i  ( (,) `  ( f `  b ) ) )  =  (/) )  ->  (
a  =  b  \/  ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) ) )
11566, 114mpd 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( a  =  b  \/  (
( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
116115ralrimivva 2635 . . . . . . . . . 10  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  A. a  e.  NN  A. b  e.  NN  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) )
117 fveq2 5525 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
f `  a )  =  ( f `  b ) )
118117fveq2d 5529 . . . . . . . . . . 11  |-  ( a  =  b  ->  ( (,) `  ( f `  a ) )  =  ( (,) `  (
f `  b )
) )
119118disjor 4007 . . . . . . . . . 10  |-  (Disj  a  e.  NN ( (,) `  (
f `  a )
)  <->  A. a  e.  NN  A. b  e.  NN  (
a  =  b  \/  ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
120116, 119sylibr 203 . . . . . . . . 9  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  -> Disj  a  e.  NN ( (,) `  (
f `  a )
) )
121 eqid 2283 . . . . . . . . 9  |-  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
12256, 120, 121uniiccmbl 18945 . . . . . . . 8  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  U. ran  ( [,]  o.  f )  e.  dom  vol )
12352, 122eqeltrrd 2358 . . . . . . 7  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  U. ( [,] " G )  e. 
dom  vol )
124123ex 423 . . . . . 6  |-  ( ph  ->  ( f : NN -1-1-onto-> G  ->  U. ( [,] " G
)  e.  dom  vol ) )
125124exlimdv 1664 . . . . 5  |-  ( ph  ->  ( E. f  f : NN -1-1-onto-> G  ->  U. ( [,] " G )  e. 
dom  vol ) )
12644, 125syl5 28 . . . 4  |-  ( ph  ->  ( G  ~~  om  ->  U. ( [,] " G
)  e.  dom  vol ) )
127126imp 418 . . 3  |-  ( (
ph  /\  G  ~~  om )  ->  U. ( [,] " G )  e. 
dom  vol )
128 reex 8828 . . . . . . . . 9  |-  RR  e.  _V
129128, 128xpex 4801 . . . . . . . 8  |-  ( RR 
X.  RR )  e. 
_V
130129inex2 4156 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
131130, 16ssexi 4159 . . . . . 6  |-  ran  F  e.  _V
132 ssdomg 6907 . . . . . 6  |-  ( ran 
F  e.  _V  ->  ( G  C_  ran  F  ->  G  ~<_  ran  F )
)
133131, 13, 132mpsyl 59 . . . . 5  |-  ( ph  ->  G  ~<_  ran  F )
134 omelon 7347 . . . . . . . 8  |-  om  e.  On
135 znnen 12491 . . . . . . . . . . . 12  |-  ZZ  ~~  NN
136135, 39entri 6915 . . . . . . . . . . 11  |-  ZZ  ~~  om
137 nn0ennn 11041 . . . . . . . . . . . 12  |-  NN0  ~~  NN
138137, 39entri 6915 . . . . . . . . . . 11  |-  NN0  ~~  om
139 xpen 7024 . . . . . . . . . . 11  |-  ( ( ZZ  ~~  om  /\  NN0  ~~  om )  ->  ( ZZ  X.  NN0 )  ~~  ( om  X.  om )
)
140136, 138, 139mp2an 653 . . . . . . . . . 10  |-  ( ZZ 
X.  NN0 )  ~~  ( om  X.  om )
141 xpomen 7643 . . . . . . . . . 10  |-  ( om 
X.  om )  ~~  om
142140, 141entri 6915 . . . . . . . . 9  |-  ( ZZ 
X.  NN0 )  ~~  om
143142ensymi 6911 . . . . . . . 8  |-  om  ~~  ( ZZ  X.  NN0 )
144 isnumi 7579 . . . . . . . 8  |-  ( ( om  e.  On  /\  om 
~~  ( ZZ  X.  NN0 ) )  ->  ( ZZ  X.  NN0 )  e. 
dom  card )
145134, 143, 144mp2an 653 . . . . . . 7  |-  ( ZZ 
X.  NN0 )  e.  dom  card
146 ffn 5389 . . . . . . . . 9  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  Fn  ( ZZ  X.  NN0 ) )
14714, 146ax-mp 8 . . . . . . . 8  |-  F  Fn  ( ZZ  X.  NN0 )
148 dffn4 5457 . . . . . . . 8  |-  ( F  Fn  ( ZZ  X.  NN0 )  <->  F : ( ZZ 
X.  NN0 ) -onto-> ran  F
)
149147, 148mpbi 199 . . . . . . 7  |-  F :
( ZZ  X.  NN0 ) -onto-> ran  F
150 fodomnum 7684 . . . . . . 7  |-  ( ( ZZ  X.  NN0 )  e.  dom  card  ->  ( F : ( ZZ  X.  NN0 ) -onto-> ran  F  ->  ran  F  ~<_  ( ZZ  X.  NN0 ) ) )
151145, 149, 150mp2 17 . . . . . 6  |-  ran  F  ~<_  ( ZZ  X.  NN0 )
152 domentr 6920 . . . . . 6  |-  ( ( ran  F  ~<_  ( ZZ 
X.  NN0 )  /\  ( ZZ  X.  NN0 )  ~~  om )  ->  ran  F  ~<_  om )
153151, 142, 152mp2an 653 . . . . 5  |-  ran  F  ~<_  om
154 domtr 6914 . . . . 5  |-  ( ( G  ~<_  ran  F  /\  ran  F  ~<_  om )  ->  G  ~<_  om )
155133, 153, 154sylancl 643 . . . 4  |-  ( ph  ->  G  ~<_  om )
156 brdom2 6891 . . . 4  |-  ( G  ~<_  om  <->  ( G  ~<  om  \/  G  ~~  om ) )
157155, 156sylib 188 . . 3  |-  ( ph  ->  ( G  ~<  om  \/  G  ~~  om ) )
15838, 127, 157mpjaodan 761 . 2  |-  ( ph  ->  U. ( [,] " G
)  e.  dom  vol )
1594, 158eqeltrd 2357 1  |-  ( ph  ->  U. ( [,] " A
)  e.  dom  vol )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    \/ w3o 933   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   <.cop 3643   U.cuni 3827   U_ciun 3905  Disj wdisj 3993   class class class wbr 4023   Oncon0 4392   omcom 4656    X. cxp 4687   dom cdm 4689   ran crn 4690   "cima 4692    o. ccom 4693   Fun wfun 5249    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   1stc1st 6120   2ndc2nd 6121    ~~ cen 6860    ~<_ cdom 6861    ~< csdm 6862   Fincfn 6863   cardccrd 7568   RRcr 8736   1c1 8738    + caddc 8740   RR*cxr 8866    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   (,)cioo 10656   [,]cicc 10659    seq cseq 11046   ^cexp 11104   abscabs 11719   volcvol 18823
This theorem is referenced by:  opnmbllem  18956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-rest 13327  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-cmp 17114  df-ovol 18824  df-vol 18825
  Copyright terms: Public domain W3C validator