Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee020 Unicode version

Theorem ee020 28480
Description: e020 28479 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee020.1  |-  ph
ee020.2  |-  ( ps 
->  ( ch  ->  th )
)
ee020.3  |-  ta
ee020.4  |-  ( ph  ->  ( th  ->  ( ta  ->  et ) ) )
Assertion
Ref Expression
ee020  |-  ( ps 
->  ( ch  ->  et ) )

Proof of Theorem ee020
StepHypRef Expression
1 ee020.1 . . . 4  |-  ph
21a1i 10 . . 3  |-  ( ch 
->  ph )
32a1i 10 . 2  |-  ( ps 
->  ( ch  ->  ph )
)
4 ee020.2 . 2  |-  ( ps 
->  ( ch  ->  th )
)
5 ee020.3 . . . 4  |-  ta
65a1i 10 . . 3  |-  ( ch 
->  ta )
76a1i 10 . 2  |-  ( ps 
->  ( ch  ->  ta ) )
8 ee020.4 . 2  |-  ( ph  ->  ( th  ->  ( ta  ->  et ) ) )
93, 4, 7, 8ee222 28319 1  |-  ( ps 
->  ( ch  ->  et ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator