MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ef0 Unicode version

Theorem ef0 12580
Description: Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
ef0  |-  ( exp `  0 )  =  1

Proof of Theorem ef0
StepHypRef Expression
1 0cn 8978 . . 3  |-  0  e.  CC
2 eqid 2366 . . . 4  |-  ( n  e.  NN0  |->  ( ( 0 ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( 0 ^ n )  / 
( ! `  n
) ) )
32efcvg 12574 . . 3  |-  ( 0  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( 0 ^ n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  0 ) )
41, 3ax-mp 8 . 2  |-  seq  0
(  +  ,  ( n  e.  NN0  |->  ( ( 0 ^ n )  /  ( ! `  n ) ) ) )  ~~>  ( exp `  0
)
5 eqid 2366 . . 3  |-  0  =  0
62ef0lem 12568 . . 3  |-  ( 0  =  0  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( 0 ^ n )  /  ( ! `  n )
) ) )  ~~>  1 )
75, 6ax-mp 8 . 2  |-  seq  0
(  +  ,  ( n  e.  NN0  |->  ( ( 0 ^ n )  /  ( ! `  n ) ) ) )  ~~>  1
8 climuni 12233 . 2  |-  ( (  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( 0 ^ n )  / 
( ! `  n
) ) ) )  ~~>  ( exp `  0
)  /\  seq  0
(  +  ,  ( n  e.  NN0  |->  ( ( 0 ^ n )  /  ( ! `  n ) ) ) )  ~~>  1 )  -> 
( exp `  0
)  =  1 )
94, 7, 8mp2an 653 1  |-  ( exp `  0 )  =  1
Colors of variables: wff set class
Syntax hints:    = wceq 1647    e. wcel 1715   class class class wbr 4125    e. cmpt 4179   ` cfv 5358  (class class class)co 5981   CCcc 8882   0cc0 8884   1c1 8885    + caddc 8887    / cdiv 9570   NN0cn0 10114    seq cseq 11210   ^cexp 11269   !cfa 11453    ~~> cli 12165   expce 12551
This theorem is referenced by:  efcan  12584  efexp  12589  cos0  12638  absefib  12686  efieq1re  12687  dveflem  19541  reeff1olem  20040  reeff1o  20041  pige3  20103  sineq0  20107  log1  20158  logne0  20175  1cxp  20241  abscxpbnd  20315  efrlim  20486  efnnfsumcl  20563  efvmacl  20581  vmage0  20582  chpge0  20587  efchtdvds  20620  ostth2  21009  xrge0iifcnv  23674  logeq0im1  23859  logccne0ALT  23861  gam1  24297
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962  ax-addf 8963  ax-mulf 8964
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-pm 6918  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-oi 7372  df-card 7719  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-n0 10115  df-z 10176  df-uz 10382  df-rp 10506  df-ico 10815  df-fz 10936  df-fzo 11026  df-fl 11089  df-seq 11211  df-exp 11270  df-fac 11454  df-hash 11506  df-shft 11769  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-limsup 12152  df-clim 12169  df-rlim 12170  df-sum 12367  df-ef 12557
  Copyright terms: Public domain W3C validator