MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efchtdvds Unicode version

Theorem efchtdvds 20810
Description: The exponentiated Chebyshev function forms a divisibility chain between any two points. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
efchtdvds  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  A
) )  ||  ( exp `  ( theta `  B
) ) )

Proof of Theorem efchtdvds
Dummy variables  p  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chtcl 20760 . . . . . . 7  |-  ( B  e.  RR  ->  ( theta `  B )  e.  RR )
213ad2ant2 979 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( theta `  B )  e.  RR )
32recnd 9048 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( theta `  B )  e.  CC )
4 chtcl 20760 . . . . . . 7  |-  ( A  e.  RR  ->  ( theta `  A )  e.  RR )
543ad2ant1 978 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( theta `  A )  e.  RR )
65recnd 9048 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( theta `  A )  e.  CC )
7 efsub 12629 . . . . 5  |-  ( ( ( theta `  B )  e.  CC  /\  ( theta `  A )  e.  CC )  ->  ( exp `  (
( theta `  B )  -  ( theta `  A
) ) )  =  ( ( exp `  ( theta `  B ) )  /  ( exp `  ( theta `  A ) ) ) )
83, 6, 7syl2anc 643 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( ( theta `  B )  -  ( theta `  A ) ) )  =  ( ( exp `  ( theta `  B ) )  / 
( exp `  ( theta `  A ) ) ) )
9 chtfl 20800 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( theta `  ( |_ `  B ) )  =  ( theta `  B )
)
1093ad2ant2 979 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( theta `  ( |_ `  B ) )  =  ( theta `  B )
)
11 chtfl 20800 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( theta `  ( |_ `  A ) )  =  ( theta `  A )
)
12113ad2ant1 978 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( theta `  ( |_ `  A ) )  =  ( theta `  A )
)
1310, 12oveq12d 6039 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( theta `  ( |_ `  B ) )  -  ( theta `  ( |_ `  A ) ) )  =  ( ( theta `  B )  -  ( theta `  A ) ) )
14 flword2 11148 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( |_ `  B )  e.  ( ZZ>= `  ( |_ `  A ) ) )
15 chtdif 20809 . . . . . . . 8  |-  ( ( |_ `  B )  e.  ( ZZ>= `  ( |_ `  A ) )  ->  ( ( theta `  ( |_ `  B
) )  -  ( theta `  ( |_ `  A ) ) )  =  sum_ p  e.  ( ( ( ( |_
`  A )  +  1 ) ... ( |_ `  B ) )  i^i  Prime ) ( log `  p ) )
1614, 15syl 16 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( theta `  ( |_ `  B ) )  -  ( theta `  ( |_ `  A ) ) )  =  sum_ p  e.  ( ( ( ( |_
`  A )  +  1 ) ... ( |_ `  B ) )  i^i  Prime ) ( log `  p ) )
1713, 16eqtr3d 2422 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( theta `  B )  -  ( theta `  A
) )  =  sum_ p  e.  ( ( ( ( |_ `  A
)  +  1 ) ... ( |_ `  B ) )  i^i 
Prime ) ( log `  p
) )
18 ssrab2 3372 . . . . . . . . 9  |-  { x  e.  RR  |  ( exp `  x )  e.  NN }  C_  RR
19 ax-resscn 8981 . . . . . . . . 9  |-  RR  C_  CC
2018, 19sstri 3301 . . . . . . . 8  |-  { x  e.  RR  |  ( exp `  x )  e.  NN }  C_  CC
2120a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  { x  e.  RR  |  ( exp `  x )  e.  NN }  C_  CC )
22 fveq2 5669 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( exp `  x )  =  ( exp `  y
) )
2322eleq1d 2454 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( exp `  x
)  e.  NN  <->  ( exp `  y )  e.  NN ) )
2423elrab 3036 . . . . . . . . 9  |-  ( y  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( y  e.  RR  /\  ( exp `  y
)  e.  NN ) )
25 fveq2 5669 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( exp `  x )  =  ( exp `  z
) )
2625eleq1d 2454 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( exp `  x
)  e.  NN  <->  ( exp `  z )  e.  NN ) )
2726elrab 3036 . . . . . . . . 9  |-  ( z  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( z  e.  RR  /\  ( exp `  z
)  e.  NN ) )
28 simpll 731 . . . . . . . . . . 11  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  y  e.  RR )
29 simprl 733 . . . . . . . . . . 11  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  z  e.  RR )
3028, 29readdcld 9049 . . . . . . . . . 10  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  (
y  +  z )  e.  RR )
3128recnd 9048 . . . . . . . . . . . 12  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  y  e.  CC )
3229recnd 9048 . . . . . . . . . . . 12  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  z  e.  CC )
33 efadd 12624 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
y  +  z ) )  =  ( ( exp `  y )  x.  ( exp `  z
) ) )
3431, 32, 33syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  ( exp `  ( y  +  z ) )  =  ( ( exp `  y
)  x.  ( exp `  z ) ) )
35 nnmulcl 9956 . . . . . . . . . . . 12  |-  ( ( ( exp `  y
)  e.  NN  /\  ( exp `  z )  e.  NN )  -> 
( ( exp `  y
)  x.  ( exp `  z ) )  e.  NN )
3635ad2ant2l 727 . . . . . . . . . . 11  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  (
( exp `  y
)  x.  ( exp `  z ) )  e.  NN )
3734, 36eqeltrd 2462 . . . . . . . . . 10  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  ( exp `  ( y  +  z ) )  e.  NN )
38 fveq2 5669 . . . . . . . . . . . 12  |-  ( x  =  ( y  +  z )  ->  ( exp `  x )  =  ( exp `  (
y  +  z ) ) )
3938eleq1d 2454 . . . . . . . . . . 11  |-  ( x  =  ( y  +  z )  ->  (
( exp `  x
)  e.  NN  <->  ( exp `  ( y  +  z ) )  e.  NN ) )
4039elrab 3036 . . . . . . . . . 10  |-  ( ( y  +  z )  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( ( y  +  z )  e.  RR  /\  ( exp `  (
y  +  z ) )  e.  NN ) )
4130, 37, 40sylanbrc 646 . . . . . . . . 9  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  (
y  +  z )  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } )
4224, 27, 41syl2anb 466 . . . . . . . 8  |-  ( ( y  e.  { x  e.  RR  |  ( exp `  x )  e.  NN }  /\  z  e.  {
x  e.  RR  | 
( exp `  x
)  e.  NN }
)  ->  ( y  +  z )  e. 
{ x  e.  RR  |  ( exp `  x
)  e.  NN }
)
4342adantl 453 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  ( y  e.  {
x  e.  RR  | 
( exp `  x
)  e.  NN }  /\  z  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } ) )  -> 
( y  +  z )  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } )
44 fzfid 11240 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  e.  Fin )
45 inss1 3505 . . . . . . . 8  |-  ( ( ( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime )  C_  (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )
46 ssfi 7266 . . . . . . . 8  |-  ( ( ( ( ( |_
`  A )  +  1 ) ... ( |_ `  B ) )  e.  Fin  /\  (
( ( ( |_
`  A )  +  1 ) ... ( |_ `  B ) )  i^i  Prime )  C_  (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) ) )  ->  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime )  e.  Fin )
4744, 45, 46sylancl 644 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( ( ( |_
`  A )  +  1 ) ... ( |_ `  B ) )  i^i  Prime )  e.  Fin )
48 inss2 3506 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime )  C_  Prime
49 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  ->  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )
5048, 49sseldi 3290 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  ->  p  e.  Prime )
51 prmnn 13010 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  NN )
5250, 51syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  ->  p  e.  NN )
5352nnrpd 10580 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  ->  p  e.  RR+ )
5453relogcld 20386 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR )
5553reeflogd 20387 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  -> 
( exp `  ( log `  p ) )  =  p )
5655, 52eqeltrd 2462 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  -> 
( exp `  ( log `  p ) )  e.  NN )
57 fveq2 5669 . . . . . . . . . 10  |-  ( x  =  ( log `  p
)  ->  ( exp `  x )  =  ( exp `  ( log `  p ) ) )
5857eleq1d 2454 . . . . . . . . 9  |-  ( x  =  ( log `  p
)  ->  ( ( exp `  x )  e.  NN  <->  ( exp `  ( log `  p ) )  e.  NN ) )
5958elrab 3036 . . . . . . . 8  |-  ( ( log `  p )  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( ( log `  p
)  e.  RR  /\  ( exp `  ( log `  p ) )  e.  NN ) )
6054, 56, 59sylanbrc 646 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  -> 
( log `  p
)  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } )
61 0re 9025 . . . . . . . . 9  |-  0  e.  RR
62 1nn 9944 . . . . . . . . 9  |-  1  e.  NN
63 fveq2 5669 . . . . . . . . . . . 12  |-  ( x  =  0  ->  ( exp `  x )  =  ( exp `  0
) )
64 ef0 12621 . . . . . . . . . . . 12  |-  ( exp `  0 )  =  1
6563, 64syl6eq 2436 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( exp `  x )  =  1 )
6665eleq1d 2454 . . . . . . . . . 10  |-  ( x  =  0  ->  (
( exp `  x
)  e.  NN  <->  1  e.  NN ) )
6766elrab 3036 . . . . . . . . 9  |-  ( 0  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( 0  e.  RR  /\  1  e.  NN ) )
6861, 62, 67mpbir2an 887 . . . . . . . 8  |-  0  e.  { x  e.  RR  |  ( exp `  x
)  e.  NN }
6968a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  0  e.  { x  e.  RR  |  ( exp `  x
)  e.  NN }
)
7021, 43, 47, 60, 69fsumcllem 12454 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  sum_ p  e.  ( ( ( ( |_ `  A )  +  1 ) ... ( |_ `  B
) )  i^i  Prime ) ( log `  p
)  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } )
7117, 70eqeltrd 2462 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( theta `  B )  -  ( theta `  A
) )  e.  {
x  e.  RR  | 
( exp `  x
)  e.  NN }
)
72 fveq2 5669 . . . . . . . 8  |-  ( x  =  ( ( theta `  B )  -  ( theta `  A ) )  ->  ( exp `  x
)  =  ( exp `  ( ( theta `  B
)  -  ( theta `  A ) ) ) )
7372eleq1d 2454 . . . . . . 7  |-  ( x  =  ( ( theta `  B )  -  ( theta `  A ) )  ->  ( ( exp `  x )  e.  NN  <->  ( exp `  ( (
theta `  B )  -  ( theta `  A )
) )  e.  NN ) )
7473elrab 3036 . . . . . 6  |-  ( ( ( theta `  B )  -  ( theta `  A
) )  e.  {
x  e.  RR  | 
( exp `  x
)  e.  NN }  <->  ( ( ( theta `  B
)  -  ( theta `  A ) )  e.  RR  /\  ( exp `  ( ( theta `  B
)  -  ( theta `  A ) ) )  e.  NN ) )
7574simprbi 451 . . . . 5  |-  ( ( ( theta `  B )  -  ( theta `  A
) )  e.  {
x  e.  RR  | 
( exp `  x
)  e.  NN }  ->  ( exp `  (
( theta `  B )  -  ( theta `  A
) ) )  e.  NN )
7671, 75syl 16 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( ( theta `  B )  -  ( theta `  A ) ) )  e.  NN )
778, 76eqeltrrd 2463 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( exp `  ( theta `  B ) )  /  ( exp `  ( theta `  A ) ) )  e.  NN )
7877nnzd 10307 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( exp `  ( theta `  B ) )  /  ( exp `  ( theta `  A ) ) )  e.  ZZ )
79 efchtcl 20762 . . . . 5  |-  ( A  e.  RR  ->  ( exp `  ( theta `  A
) )  e.  NN )
80793ad2ant1 978 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  A
) )  e.  NN )
8180nnzd 10307 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  A
) )  e.  ZZ )
8280nnne0d 9977 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  A
) )  =/=  0
)
83 efchtcl 20762 . . . . 5  |-  ( B  e.  RR  ->  ( exp `  ( theta `  B
) )  e.  NN )
84833ad2ant2 979 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  B
) )  e.  NN )
8584nnzd 10307 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  B
) )  e.  ZZ )
86 dvdsval2 12783 . . 3  |-  ( ( ( exp `  ( theta `  A ) )  e.  ZZ  /\  ( exp `  ( theta `  A
) )  =/=  0  /\  ( exp `  ( theta `  B ) )  e.  ZZ )  -> 
( ( exp `  ( theta `  A ) ) 
||  ( exp `  ( theta `  B ) )  <-> 
( ( exp `  ( theta `  B ) )  /  ( exp `  ( theta `  A ) ) )  e.  ZZ ) )
8781, 82, 85, 86syl3anc 1184 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( exp `  ( theta `  A ) ) 
||  ( exp `  ( theta `  B ) )  <-> 
( ( exp `  ( theta `  B ) )  /  ( exp `  ( theta `  A ) ) )  e.  ZZ ) )
8878, 87mpbird 224 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  A
) )  ||  ( exp `  ( theta `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   {crab 2654    i^i cin 3263    C_ wss 3264   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   Fincfn 7046   CCcc 8922   RRcr 8923   0cc0 8924   1c1 8925    + caddc 8927    x. cmul 8929    <_ cle 9055    - cmin 9224    / cdiv 9610   NNcn 9933   ZZcz 10215   ZZ>=cuz 10421   ...cfz 10976   |_cfl 11129   sum_csu 12407   expce 12592    || cdivides 12780   Primecprime 13007   logclog 20320   thetaccht 20741
This theorem is referenced by:  bposlem6  20941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-fac 11495  df-bc 11522  df-hash 11547  df-shft 11810  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-limsup 12193  df-clim 12210  df-rlim 12211  df-sum 12408  df-ef 12598  df-sin 12600  df-cos 12601  df-pi 12603  df-dvds 12781  df-prm 13008  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-mulg 14743  df-cntz 15044  df-cmn 15342  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-fbas 16624  df-fg 16625  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cld 17007  df-ntr 17008  df-cls 17009  df-nei 17086  df-lp 17124  df-perf 17125  df-cn 17214  df-cnp 17215  df-haus 17302  df-tx 17516  df-hmeo 17709  df-fil 17800  df-fm 17892  df-flim 17893  df-flf 17894  df-xms 18260  df-ms 18261  df-tms 18262  df-cncf 18780  df-limc 19621  df-dv 19622  df-log 20322  df-cht 20747
  Copyright terms: Public domain W3C validator