MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efchtdvds Unicode version

Theorem efchtdvds 20393
Description: The exponentiated Chebyshev function forms a divisibility chain between any two points. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
efchtdvds  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  A
) )  ||  ( exp `  ( theta `  B
) ) )
Dummy variables  p  x  y  z are mutually distinct and distinct from all other variables.

Proof of Theorem efchtdvds
StepHypRef Expression
1 chtcl 20343 . . . . . . 7  |-  ( B  e.  RR  ->  ( theta `  B )  e.  RR )
213ad2ant2 979 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( theta `  B )  e.  RR )
32recnd 8858 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( theta `  B )  e.  CC )
4 chtcl 20343 . . . . . . 7  |-  ( A  e.  RR  ->  ( theta `  A )  e.  RR )
543ad2ant1 978 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( theta `  A )  e.  RR )
65recnd 8858 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( theta `  A )  e.  CC )
7 efsub 12376 . . . . 5  |-  ( ( ( theta `  B )  e.  CC  /\  ( theta `  A )  e.  CC )  ->  ( exp `  (
( theta `  B )  -  ( theta `  A
) ) )  =  ( ( exp `  ( theta `  B ) )  /  ( exp `  ( theta `  A ) ) ) )
83, 6, 7syl2anc 644 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( ( theta `  B )  -  ( theta `  A ) ) )  =  ( ( exp `  ( theta `  B ) )  / 
( exp `  ( theta `  A ) ) ) )
9 chtfl 20383 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( theta `  ( |_ `  B ) )  =  ( theta `  B )
)
1093ad2ant2 979 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( theta `  ( |_ `  B ) )  =  ( theta `  B )
)
11 chtfl 20383 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( theta `  ( |_ `  A ) )  =  ( theta `  A )
)
12113ad2ant1 978 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( theta `  ( |_ `  A ) )  =  ( theta `  A )
)
1310, 12oveq12d 5839 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( theta `  ( |_ `  B ) )  -  ( theta `  ( |_ `  A ) ) )  =  ( ( theta `  B )  -  ( theta `  A ) ) )
14 flword2 10939 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( |_ `  B )  e.  ( ZZ>= `  ( |_ `  A ) ) )
15 chtdif 20392 . . . . . . . 8  |-  ( ( |_ `  B )  e.  ( ZZ>= `  ( |_ `  A ) )  ->  ( ( theta `  ( |_ `  B
) )  -  ( theta `  ( |_ `  A ) ) )  =  sum_ p  e.  ( ( ( ( |_
`  A )  +  1 ) ... ( |_ `  B ) )  i^i  Prime ) ( log `  p ) )
1614, 15syl 17 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( theta `  ( |_ `  B ) )  -  ( theta `  ( |_ `  A ) ) )  =  sum_ p  e.  ( ( ( ( |_
`  A )  +  1 ) ... ( |_ `  B ) )  i^i  Prime ) ( log `  p ) )
1713, 16eqtr3d 2320 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( theta `  B )  -  ( theta `  A
) )  =  sum_ p  e.  ( ( ( ( |_ `  A
)  +  1 ) ... ( |_ `  B ) )  i^i 
Prime ) ( log `  p
) )
18 ssrab2 3261 . . . . . . . . 9  |-  { x  e.  RR  |  ( exp `  x )  e.  NN }  C_  RR
19 ax-resscn 8791 . . . . . . . . 9  |-  RR  C_  CC
2018, 19sstri 3191 . . . . . . . 8  |-  { x  e.  RR  |  ( exp `  x )  e.  NN }  C_  CC
2120a1i 12 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  { x  e.  RR  |  ( exp `  x )  e.  NN }  C_  CC )
22 fveq2 5487 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( exp `  x )  =  ( exp `  y
) )
2322eleq1d 2352 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( exp `  x
)  e.  NN  <->  ( exp `  y )  e.  NN ) )
2423elrab 2926 . . . . . . . . 9  |-  ( y  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( y  e.  RR  /\  ( exp `  y
)  e.  NN ) )
25 fveq2 5487 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( exp `  x )  =  ( exp `  z
) )
2625eleq1d 2352 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( exp `  x
)  e.  NN  <->  ( exp `  z )  e.  NN ) )
2726elrab 2926 . . . . . . . . 9  |-  ( z  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( z  e.  RR  /\  ( exp `  z
)  e.  NN ) )
28 simpll 732 . . . . . . . . . . 11  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  y  e.  RR )
29 simprl 734 . . . . . . . . . . 11  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  z  e.  RR )
3028, 29readdcld 8859 . . . . . . . . . 10  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  (
y  +  z )  e.  RR )
3128recnd 8858 . . . . . . . . . . . 12  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  y  e.  CC )
3229recnd 8858 . . . . . . . . . . . 12  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  z  e.  CC )
33 efadd 12371 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
y  +  z ) )  =  ( ( exp `  y )  x.  ( exp `  z
) ) )
3431, 32, 33syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  ( exp `  ( y  +  z ) )  =  ( ( exp `  y
)  x.  ( exp `  z ) ) )
35 nnmulcl 9766 . . . . . . . . . . . 12  |-  ( ( ( exp `  y
)  e.  NN  /\  ( exp `  z )  e.  NN )  -> 
( ( exp `  y
)  x.  ( exp `  z ) )  e.  NN )
3635ad2ant2l 728 . . . . . . . . . . 11  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  (
( exp `  y
)  x.  ( exp `  z ) )  e.  NN )
3734, 36eqeltrd 2360 . . . . . . . . . 10  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  ( exp `  ( y  +  z ) )  e.  NN )
38 fveq2 5487 . . . . . . . . . . . 12  |-  ( x  =  ( y  +  z )  ->  ( exp `  x )  =  ( exp `  (
y  +  z ) ) )
3938eleq1d 2352 . . . . . . . . . . 11  |-  ( x  =  ( y  +  z )  ->  (
( exp `  x
)  e.  NN  <->  ( exp `  ( y  +  z ) )  e.  NN ) )
4039elrab 2926 . . . . . . . . . 10  |-  ( ( y  +  z )  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( ( y  +  z )  e.  RR  /\  ( exp `  (
y  +  z ) )  e.  NN ) )
4130, 37, 40sylanbrc 647 . . . . . . . . 9  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  (
y  +  z )  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } )
4224, 27, 41syl2anb 467 . . . . . . . 8  |-  ( ( y  e.  { x  e.  RR  |  ( exp `  x )  e.  NN }  /\  z  e.  {
x  e.  RR  | 
( exp `  x
)  e.  NN }
)  ->  ( y  +  z )  e. 
{ x  e.  RR  |  ( exp `  x
)  e.  NN }
)
4342adantl 454 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  ( y  e.  {
x  e.  RR  | 
( exp `  x
)  e.  NN }  /\  z  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } ) )  -> 
( y  +  z )  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } )
44 fzfid 11031 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  e.  Fin )
45 inss1 3392 . . . . . . . 8  |-  ( ( ( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime )  C_  (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )
46 ssfi 7080 . . . . . . . 8  |-  ( ( ( ( ( |_
`  A )  +  1 ) ... ( |_ `  B ) )  e.  Fin  /\  (
( ( ( |_
`  A )  +  1 ) ... ( |_ `  B ) )  i^i  Prime )  C_  (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) ) )  ->  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime )  e.  Fin )
4744, 45, 46sylancl 645 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( ( ( |_
`  A )  +  1 ) ... ( |_ `  B ) )  i^i  Prime )  e.  Fin )
48 inss2 3393 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime )  C_  Prime
49 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  ->  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )
5048, 49sseldi 3181 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  ->  p  e.  Prime )
51 prmnn 12757 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  NN )
5250, 51syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  ->  p  e.  NN )
5352nnrpd 10386 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  ->  p  e.  RR+ )
5453relogcld 19970 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR )
5553reeflogd 19971 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  -> 
( exp `  ( log `  p ) )  =  p )
5655, 52eqeltrd 2360 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  -> 
( exp `  ( log `  p ) )  e.  NN )
57 fveq2 5487 . . . . . . . . . 10  |-  ( x  =  ( log `  p
)  ->  ( exp `  x )  =  ( exp `  ( log `  p ) ) )
5857eleq1d 2352 . . . . . . . . 9  |-  ( x  =  ( log `  p
)  ->  ( ( exp `  x )  e.  NN  <->  ( exp `  ( log `  p ) )  e.  NN ) )
5958elrab 2926 . . . . . . . 8  |-  ( ( log `  p )  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( ( log `  p
)  e.  RR  /\  ( exp `  ( log `  p ) )  e.  NN ) )
6054, 56, 59sylanbrc 647 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  /\  p  e.  ( (
( ( |_ `  A )  +  1 ) ... ( |_
`  B ) )  i^i  Prime ) )  -> 
( log `  p
)  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } )
61 0re 8835 . . . . . . . . 9  |-  0  e.  RR
62 1nn 9754 . . . . . . . . 9  |-  1  e.  NN
63 fveq2 5487 . . . . . . . . . . . 12  |-  ( x  =  0  ->  ( exp `  x )  =  ( exp `  0
) )
64 ef0 12368 . . . . . . . . . . . 12  |-  ( exp `  0 )  =  1
6563, 64syl6eq 2334 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( exp `  x )  =  1 )
6665eleq1d 2352 . . . . . . . . . 10  |-  ( x  =  0  ->  (
( exp `  x
)  e.  NN  <->  1  e.  NN ) )
6766elrab 2926 . . . . . . . . 9  |-  ( 0  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( 0  e.  RR  /\  1  e.  NN ) )
6861, 62, 67mpbir2an 888 . . . . . . . 8  |-  0  e.  { x  e.  RR  |  ( exp `  x
)  e.  NN }
6968a1i 12 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  0  e.  { x  e.  RR  |  ( exp `  x
)  e.  NN }
)
7021, 43, 47, 60, 69fsumcllem 12201 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  sum_ p  e.  ( ( ( ( |_ `  A )  +  1 ) ... ( |_ `  B
) )  i^i  Prime ) ( log `  p
)  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } )
7117, 70eqeltrd 2360 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( theta `  B )  -  ( theta `  A
) )  e.  {
x  e.  RR  | 
( exp `  x
)  e.  NN }
)
72 fveq2 5487 . . . . . . . 8  |-  ( x  =  ( ( theta `  B )  -  ( theta `  A ) )  ->  ( exp `  x
)  =  ( exp `  ( ( theta `  B
)  -  ( theta `  A ) ) ) )
7372eleq1d 2352 . . . . . . 7  |-  ( x  =  ( ( theta `  B )  -  ( theta `  A ) )  ->  ( ( exp `  x )  e.  NN  <->  ( exp `  ( (
theta `  B )  -  ( theta `  A )
) )  e.  NN ) )
7473elrab 2926 . . . . . 6  |-  ( ( ( theta `  B )  -  ( theta `  A
) )  e.  {
x  e.  RR  | 
( exp `  x
)  e.  NN }  <->  ( ( ( theta `  B
)  -  ( theta `  A ) )  e.  RR  /\  ( exp `  ( ( theta `  B
)  -  ( theta `  A ) ) )  e.  NN ) )
7574simprbi 452 . . . . 5  |-  ( ( ( theta `  B )  -  ( theta `  A
) )  e.  {
x  e.  RR  | 
( exp `  x
)  e.  NN }  ->  ( exp `  (
( theta `  B )  -  ( theta `  A
) ) )  e.  NN )
7671, 75syl 17 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( ( theta `  B )  -  ( theta `  A ) ) )  e.  NN )
778, 76eqeltrrd 2361 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( exp `  ( theta `  B ) )  /  ( exp `  ( theta `  A ) ) )  e.  NN )
7877nnzd 10113 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( exp `  ( theta `  B ) )  /  ( exp `  ( theta `  A ) ) )  e.  ZZ )
79 efchtcl 20345 . . . . 5  |-  ( A  e.  RR  ->  ( exp `  ( theta `  A
) )  e.  NN )
80793ad2ant1 978 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  A
) )  e.  NN )
8180nnzd 10113 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  A
) )  e.  ZZ )
8280nnne0d 9787 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  A
) )  =/=  0
)
83 efchtcl 20345 . . . . 5  |-  ( B  e.  RR  ->  ( exp `  ( theta `  B
) )  e.  NN )
84833ad2ant2 979 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  B
) )  e.  NN )
8584nnzd 10113 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  B
) )  e.  ZZ )
86 dvdsval2 12530 . . 3  |-  ( ( ( exp `  ( theta `  A ) )  e.  ZZ  /\  ( exp `  ( theta `  A
) )  =/=  0  /\  ( exp `  ( theta `  B ) )  e.  ZZ )  -> 
( ( exp `  ( theta `  A ) ) 
||  ( exp `  ( theta `  B ) )  <-> 
( ( exp `  ( theta `  B ) )  /  ( exp `  ( theta `  A ) ) )  e.  ZZ ) )
8781, 82, 85, 86syl3anc 1184 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( exp `  ( theta `  A ) ) 
||  ( exp `  ( theta `  B ) )  <-> 
( ( exp `  ( theta `  B ) )  /  ( exp `  ( theta `  A ) ) )  e.  ZZ ) )
8878, 87mpbird 225 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  A
) )  ||  ( exp `  ( theta `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1625    e. wcel 1687    =/= wne 2449   {crab 2550    i^i cin 3154    C_ wss 3155   class class class wbr 4026   ` cfv 5223  (class class class)co 5821   Fincfn 6860   CCcc 8732   RRcr 8733   0cc0 8734   1c1 8735    + caddc 8737    x. cmul 8739    <_ cle 8865    - cmin 9034    / cdiv 9420   NNcn 9743   ZZcz 10021   ZZ>=cuz 10227   ...cfz 10778   |_cfl 10920   sum_csu 12154   expce 12339    || cdivides 12527   Primecprime 12754   logclog 19908   thetaccht 20324
This theorem is referenced by:  bposlem6  20524
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-rep 4134  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513  ax-inf2 7339  ax-cnex 8790  ax-resscn 8791  ax-1cn 8792  ax-icn 8793  ax-addcl 8794  ax-addrcl 8795  ax-mulcl 8796  ax-mulrcl 8797  ax-mulcom 8798  ax-addass 8799  ax-mulass 8800  ax-distr 8801  ax-i2m1 8802  ax-1ne0 8803  ax-1rid 8804  ax-rnegex 8805  ax-rrecex 8806  ax-cnre 8807  ax-pre-lttri 8808  ax-pre-lttrn 8809  ax-pre-ltadd 8810  ax-pre-mulgt0 8811  ax-pre-sup 8812  ax-addf 8813  ax-mulf 8814
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-nel 2452  df-ral 2551  df-rex 2552  df-reu 2553  df-rmo 2554  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-pss 3171  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3831  df-int 3866  df-iun 3910  df-iin 3911  df-br 4027  df-opab 4081  df-mpt 4082  df-tr 4117  df-eprel 4306  df-id 4310  df-po 4315  df-so 4316  df-fr 4353  df-se 4354  df-we 4355  df-ord 4396  df-on 4397  df-lim 4398  df-suc 4399  df-om 4658  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-isom 5232  df-ov 5824  df-oprab 5825  df-mpt2 5826  df-of 6041  df-1st 6085  df-2nd 6086  df-iota 6254  df-riota 6301  df-recs 6385  df-rdg 6420  df-1o 6476  df-2o 6477  df-oadd 6480  df-er 6657  df-map 6771  df-pm 6772  df-ixp 6815  df-en 6861  df-dom 6862  df-sdom 6863  df-fin 6864  df-fi 7162  df-sup 7191  df-oi 7222  df-card 7569  df-cda 7791  df-pnf 8866  df-mnf 8867  df-xr 8868  df-ltxr 8869  df-le 8870  df-sub 9036  df-neg 9037  df-div 9421  df-nn 9744  df-2 9801  df-3 9802  df-4 9803  df-5 9804  df-6 9805  df-7 9806  df-8 9807  df-9 9808  df-10 9809  df-n0 9963  df-z 10022  df-dec 10122  df-uz 10228  df-q 10314  df-rp 10352  df-xneg 10449  df-xadd 10450  df-xmul 10451  df-ioo 10656  df-ioc 10657  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-fl 10921  df-mod 10970  df-seq 11043  df-exp 11101  df-fac 11285  df-bc 11312  df-hash 11334  df-shft 11558  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-limsup 11941  df-clim 11958  df-rlim 11959  df-sum 12155  df-ef 12345  df-sin 12347  df-cos 12348  df-pi 12350  df-dvds 12528  df-prm 12755  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-starv 13219  df-sca 13220  df-vsca 13221  df-tset 13223  df-ple 13224  df-ds 13226  df-hom 13228  df-cco 13229  df-rest 13323  df-topn 13324  df-topgen 13340  df-pt 13341  df-prds 13344  df-xrs 13399  df-0g 13400  df-gsum 13401  df-qtop 13406  df-imas 13407  df-xps 13409  df-mre 13484  df-mrc 13485  df-acs 13487  df-mnd 14363  df-submnd 14412  df-mulg 14488  df-cntz 14789  df-cmn 15087  df-xmet 16369  df-met 16370  df-bl 16371  df-mopn 16372  df-cnfld 16374  df-top 16632  df-bases 16634  df-topon 16635  df-topsp 16636  df-cld 16752  df-ntr 16753  df-cls 16754  df-nei 16831  df-lp 16864  df-perf 16865  df-cn 16953  df-cnp 16954  df-haus 17039  df-tx 17253  df-hmeo 17442  df-fbas 17516  df-fg 17517  df-fil 17537  df-fm 17629  df-flim 17630  df-flf 17631  df-xms 17881  df-ms 17882  df-tms 17883  df-cncf 18378  df-limc 19212  df-dv 19213  df-log 19910  df-cht 20330
  Copyright terms: Public domain W3C validator